
Medical & Biolo
Emotion recognition system
using short-term monitoring

of physiological signals

K. H. Kim1 S. W. Bang2 S. R. Kim2

1Department of Biomedical Engineering, College of Health Science, Yonsei University, South Korea
2Human–computer Interaction Laboratory, Samsung Advanced Institute of Technology, South Korea

Abstract—A physiological signal-based emotion recognition system is reported. The
system was developed to operate as a user-independent system, based on physio-
logical signal databases obtained from multiple subjects. The input signals were
electrocardiogram, skin temperature variation and electrodermal activity, all of which
were acquired without much discomfort from the body surface, and can reflect the
influence of emotion on the autonomic nervous system. The system consisted of
preprocessing, feature extraction and pattern classification stages. Preprocessing and
feature extraction methods were devised so that emotion-specific characteristics
could be extracted from short-segment signals. Although the features were carefully
extracted, their distribution formed a classification problem, with large overlap
among clusters and large variance within clusters. A support vector machine was
adopted as a pattern classifier to resolve this difficulty. Correct-classification ratios
for 50 subjects were 78.4% and 61.8%, for the recognition of three and four
categories, respectively.

Keywords—Emotion recognition, Autonomic nervous system, Physiological signal
processing, Support vector machine
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1 Introduction

RESEARCH EFFORTS in human–computer interaction are focused
on the means to empower computers (robots and other machines)
to understand human intention, e.g. speech recognition and
gesture recognition systems (BING-HWANG and FURUI, 2000;
COWIE et al., 2001; TEFAS et al., 2001). In spite of considerable
achievements in this area during the past several decades, there
are still a lot of problems, and many researchers are trying to
solve them. Besides, there is another important but ignored mode
of communication that may be important for more natural
interaction: emotion plays an important role in contextual under-
standing of messages from others in speech or visual forms.

There are numerous areas in human–computer interaction that
could effectively use the capability to understand emotion
(COWIE et al., 2001). For example, it is accepted that emotional
ability is an essential factor for the next-generation personal
robot, such as the Sony AIBO (ARKIN et al., 2001). It can also
play a significant role in ‘intelligent room’ (HIRSH et al., 1999)
and ‘affective computer tutor’ (PICARD, 1995).

Although limited in number compared with the efforts being
made towards intention-translation means, some researchers are
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trying to realise man–machine interfaces with an emotion-
understanding capability. Most of them are focused on facial
expression recognition and speech signal analysis (COWIE et al.,
2001). Another possible approach for emotion recognition is
physiological signal analysis. We believe that this is a more
natural means of emotion recognition, in that the influence of
emotion on facial expression or speech can be suppressed
relatively easily, and emotional status is inherently reflected in
the activity of the nervous system.

In the field of psychophysiology, traditional tools for the
investigation of human emotional status are based on the
recording and statistical analysis of physiological signals from
both the central and autonomic nervous systems (ANDREASSI,
2000; BOUCSEIN, 1992). Researchers at IBM recently reported
an emotion recognition device based on mouse-type hardware
(ARK et al., 1999). Picard and colleagues at the MIT Media
Laboratory have been exerting their efforts to implement an
‘affective computer’ since the late 1990s (PICARD, 1995; PICARD

et al., 2001; PICARD and HEALEY, 1998; FERNANDEZ and
PICARD, 1998). Although they demonstrated the feasibility of
a physiological signal-based emotion recognition system,
several aspects of its performance need to be improved before
it can be utilised as a practical system.

First, their algorithm development and performance tests were
carried out with data that reflect intentionally expressed emotion.
Moreover, their data were acquired from only one subject, and,
hence, their emotion recognition algorithm is user-dependent
and must be tuned to a specific person. It seems natural to start
from the development of a user-dependent system, as the speech
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recognition system began with a speaker-dependent system.
Nevertheless, a user-independent system is essential for practical
application, so that the users do not have to be bothered with
training of the system. To our knowledge, there is no previous
study that has demonstrated a physiological signal-based
emotion recognition system that is applicable to multiple
users. Another problem with current systems is the required
length of signals. At present, at least 2–5 min of signal moni-
toring is required for a decision (PICARD et al., 2001; PICARD and
HEALEY, 1998; ARK et al., 1999). For practical purposes, the
required monitoring time should be reduced further.

In this paper, a novel emotion recognition system based on the
processing of physiological signals is presented. This system
shows a recognition ratio much higher than chance probability,
when applied to physiological signal databases obtained from
tens to hundreds of subjects. The system consists of character-
istic waveform detection, feature extraction and pattern classi-
fication stages. Although the waveform detection and feature
extraction stages were designed carefully, there was a large
amount of within-class variation of features and overlap among
classes. This problem could not be solved by simple classifiers,
such as linear and quadratic classifiers, that were adopted for
previous studies with similar purposes.

We utilised a support vector machine, along with parameter
determination using cross-validation, to overcome this difficulty
in pattern classification. Unlike other pattern recognition
problems, such as speech or character recognition, uncertainty
in the class labels of feature vectors of training and test data (i.e.
the ground truth on emotional status) is substantial. For example,
it is quite certain that the speech waveform under investigation
corresponds to ‘dog’ or ‘cat’; however, in our case, it is
impossible correctly to judge whether current multiple physio-
logical signal waveforms represent the status of ‘happiness’
or ‘sadness’. This absence of the ‘ground truth’ renders the
implementation of physiological signal-based emotion recogni-
tion very difficult. Considering this and the fact that there
exist many other uncontrollable sources affecting the physiolo-
gical signals, the recognition ratio achieved seems to be
encouraging.

2 Methods

2.1 Subjects

Originally, our target subjects were children aged from five to
eight years. Algorithm development and performance testing of
the overall system were carried out for the physiological signal
databases constructed from two groups of subjects. The data-
bases were acquired with the procedure described below in
Section 2.2. The first group of subjects included 125 subjects
who were from five to eight years old. Similar experiments were
performed to construct another database 1 year after the
construction of the first database, and 50 subjects, aged from
seven to eight years old participated, as preschool children (aged
five–six years) showed difficulty in inducing emotions and
reporting them.

For the second database, special attention was paid so that
severe contamination of the signals by motion artifact was not
present, and there was no discontinuity of signal recording
between the baseline measurement and the signal under
stimulus. All the subjects were normal children without any
history of medical, neurological or psychiatric illness. All the
experiments were carriedout after consent had been obtained
from the subjects, their teacher and parents.

From the database of the first group, data from half the subjects
(randomly chosen) were used for the training, and data from the
rest were used for the test. No special preprocessing by visual
inspection was performed to eliminate severely contaminated
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segments from the raw signals. For the database of the second
group, data from the 33 randomly chosen subjects (approximately
two-thirds of all subjects) were used for the training, and data
from the rest (17 subjects) were used for the test.

2.2 Physiological studies

2.2.1 Selection of input signals for the emotion recognition
system: Acquisition of a high-quality database of physiologi-
cal signals is vital for the emotion recognition algorithm
development. An important concern is the selection of signals
that are to be used as input to the emotion recognition system.
It is desirable that the influence of emotion on the activity of
the nervous system is effectively reflected in the physiological
signals employed. Unlike the case of speech recognition or
facial expression recognition, where knowledge of the correct
class label of a given data point is self-evident, the acquisition
of a high-quality physiological signal database with confi-
dence in the underlying emotional status is an intricate task.
It is not at all easy to judge whether the targeted emotional
status is properly induced. Even if it is properly induced, the
variation in physiological responses among individuals is
expected to be enormous. Moreover, it is generally hard
to determine whether the phenomenological changes in the
physiological signals are from emotional status change or
other factors, such as cognition, thought and sensory stimuli.

Because we were determined to develop a practical algorithm,
there is a limitation on the range of usable signals. Although
electro-encephalogram, respiration and facial electromyograms
would be expected to be helpful, the attachment of electrodes to
the scalp or face seems not to be tolerable for practical use, and
thus we decided not to employ them. In this study, the selected
input signals are skin temperature variation, electrodermal
activity and heart rate, which can be derived from electrocar-
diogram (ECG) or photoplethysmogram. We expect that the
sensors can eventually be implemented as a ring-type or wrist-
watch-type sensor module that can be worn for 24 h without
discomfort.

The input signals reflect the activity of the autonomic nervous
system. The autonomic nervous system plays a major role in
maintaining the internal equilibrium of the body. It is connected
to smooth muscles, the secretion glands of internal organs and
cardiac muscles. The autonomic nervous system is divided into
the sympathetic nervous system and the parasympathetic
nervous system. These two branches of the autonomic nervous
system are operated in antagonistic fashion to maintain home-
ostasis. It is well known that emotional stimuli can have a great
effect on the activity of the autonomic nervous system
(ANDREASSI, 2000; BOUCSEIN, 1992). The increase in heart
rate and blood pressure and the enlargement of pupil diameter
under fear stimuli are typical examples of this phenomenon.
Here, we briefly explain the underlying rationale of correlation
between emotion and the adopted signals.

The sino-atrial node, which acts as pacemaker of cardiovas-
cular activity, receives inputs from both branches of the
autonomic nervous system. The activity level of the sympathetic
nervous system is presented to the sino-atrial node by a post-
ganglionic fibre, and that of the parasympathetic nervous system
is given by a vagal nerve. The sino-atrial node can be thought of
as a spike train generator whose inter-spike interval is modulated
by the integration of the activity levels of the parasympathetic
and sympathetic nervous system. In other words, if we treat the
heartbeat as a random point process, its rate is dependent on the
activity level of the autonomic nervous system, which in turn
is dependent on emotional stimuli. This information can be
extracted from the change in heart rate as a function of time and
thus can be extracted from the ECG. Photoplethysmography
(PPG) can also be used to extract heart rate and is better suited
edical & Biological Engineering & Computing 2004, Vol. 42



for the simplification of the sensor module. Degradation of the
signal quality of PPG due to motion artifact should be reduced
before it is adopted for our purposes.

Electrodermal activity (EDA) is another signal that can easily
be measured from the body surface and represents the activity of
the autonomic nervous system. It is also called galvanic skin
response (BOUCSEIN, 1992). It characterises changes in the
electrical properties of the skin due to the activity of sweat
glands and is physically interpreted as conductance. Sweat
glands distributed on the skin receive input from the sympathetic
nervous system only, and thus this is a good indicator of arousal
level due to external sensory and cognitive stimuli. It has
frequently been adopted for polygraphic lie detectors (JIANG

et al., 2000).
Variations in the skin temperature (SKT) mainly come from

localised changes in blood flow caused by vascular resistance or
arterial blood pressure. Local vascular resistance is modulated
by smooth muscle tone, which is mediated by the sympathetic
nervous system. The mechanism of arterial blood pressure
variation can be described by a complicated model of cardio-
vascular regulation by the autonomic nervous system. Thus it is
evident that the SKT variation reflects autonomic nervous
system activity and is another effective indicator of emotional
status. The variation is SKT due to emotional stimuli was
studied by SHUSTERMAN and BARNEA (1995) and KATAOKA

et al. (1998).

2.2.2 Acquisition of emotion-specific physiological signal
database: The physiological signals were acquired using the
MP100 system*. The sampling rate was fixed at 256
samples s�1 for all the channels. The ECG was measured
from both upper arms with the two-electrode method based
on lead I. PPG and SKT were measured from the little finger
and the ring finger of the left hand, respectively. EDA was
measured from two Ag=AgCl electrodes attached to the index
and middle fingers of the right hand. Appropriate amplification
and bandpass filtering were performed. One session of experi-
ments took approximately 5min. The first 2min corresponded
to the baseline measurement and were obtained without any
emotional stimulus. The subjects were requested to be as
relaxed as possible during this period. Subsequently, emo-
tional stimulus was applied, and debriefing and recovery
followed.

2.2.3 Emotion induction protocol: As in the cases of other
pattern recognition systems, it was essential to obtain a
database of physiological signals representing specific emo-
tional statuses. To acquire a database of physiological signals
in which the influence of emotional status was faithfully
reflected, we developed a set of elaborate protocols for
emotion induction. We concluded that visual stimulation
using still images was not sufficient for effective emotion
induction, and we did not use the international affective
picture system (IAPS) developed by LANG et al. (1988),
despite its being adopted for many psychophysiological stu-
dies involving emotion induction.

Our protocol utilised a multimodal (audio, visual and cogni-
tive) approach to evoke specific targeted emotional statuses, and
it was developed in collaboration with specialists from the field
of cognitive and physiological psychology (YANG et al., 2000).
Fig. 1 illustrates one of the stimuli, the purpose of which was to
induce the status of ‘sadness’. It consisted of visual stimulus
using controlled illumination and auditory stimulus using
background music. Simultaneously, an actress narrated a sad
story that was carefully prepared to evoke the sympathy of the

*BIOPAC, Santa Barbara, CA, USA
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subjects. The subjects were requested to look at a toy in front of
them, so that it seemed as if the toy was telling the sad story to the
subjects. The appearance of the toy was carefully chosen to
induce the state of sadness effectively. These stimuli were
presented in the environment of a typical living room inside an
electrically shielded and soundproof chamber. We created a
scenario so that the subject felt as if the toy were telling a story to
them, as shown in Fig. 1. The emotion induction protocols are
summarised in Table 1.

A preliminary test of the protocols was performed for
80 subjects aged from seven to eight years. The test was based
on the self-reports of the subjects. The self-report was obtained
by a question that encouraged the subjects to state the status and
strength of the emotions they felt during the applied induction
protocol. They were asked to report the strength using a
five-point scale. Monitoring of the activity of the subjects by

audio stimulus:
background, sad music

visual stimulus: subjects were requested to
gaze at toy

cognitive stimulus:
narration of sad story

by actress, in crying and
appealing voice

visual stimulus: blue illumination

Fig. 1 Illustration of example of emotion induction protocols. Its
purpose is to induce status of ‘sadness’

Table 1 Summary of emotion-induction protocols

Emotion Stimulus protocol

Sadness Story that evokes sympathy of
subject told in appealing
tone=crying voice; sad
background music; toy with
gloomy-looking appearance;
blue illumination

Anger Story that deceives subjects told
in sarcastic voice; situation of
feeling mortified; toy with
unpleasant appearance; red
illumination

Stress Subject pressed to complete
impossible mission in short
time; subject compared
unfavourably with other
subjects; disordered
environment; hard to
concentrate on mission; prim
looking doll; flickering
illumination

Surprise Sudden increase in volume of
background music;
intermittent sound of buzzer
and breaking glass
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an expert was used to provide supplementary information.
The quality of the developed protocols was quantified by
‘appropriateness’ and ‘effectiveness’. Appropriateness was
defined as the percentage of subjects who reported that the
given stimulus properly induced the intended emotion.
Effectiveness was determined from the self-report results,
where the subjects were requested to give a verbal rating of
the level of strength of the emotion that he or she felt from the
stimulus in five discrete ranks.

When applied to 80 subjects, the test result showed appro-
priateness of 85.2% and effectiveness of 82.7%. For negative
emotions such as sadness or anger, the depth of stimulus was
limited so as not to produce any unpleasant effects. A description
of the whole experiment session and a request for active
participation of the subjects were given before the stimulus
presentation. After the stimulus, debriefing was performed for
the recovery of the subjects’ mental status.

2.3 Preprocessing, waveform detection and
feature extraction

The first necessary step was the detection of the characteristic
waveform and extraction of useful information-bearing features
for pattern classification. As shown in Fig. 2, the baseline values
of each component of the feature vectors were subtracted before
they were given to the classifier. Here, the baseline values mean
the components of feature vectors extracted from 50 s segments
of signals that were acquired without stimulus.

2.3.1 RR interval and heart rate variability: Fig. 3 shows the
block diagram of the feature extraction module for the heart
rate. Heart rate variability (HRV) contains abundant informa-
tion on the status of the autonomic nervous system and can be
derived from ECG or PPG. Degrees of the sympathetic and
parasympathetic nervous system activities can be grasped, as
we described above. Time-domain features, such as mean and
standard deviation (SD) of the HRV time series and its time-
derivative, and a descriptor of a Poincare plot, have frequently
been used as features (GARCIA-GONZALEZ and PALLAS-
ARENY, 2001; WANG et al., 1998). Frequency-domain features
of HRV have also been considered to be significant for the
exploration of the autonomic nervous system in many previous
studies for cardiac function assessment and psychophysiolo-
gical investigation (DRUMMOND and QUAH, 2001; MCCRATY

et al., 1995).
We did not employ non-linear or chaotic analyses, as they

usually require long-term monitoring of signals. As our target was
to extract the features that are useful for emotion recognition from
short signal segments, the frequency-domain features of the HRV
should be determined from short segments of signals. Although
accurate spectrum estimation from a short-term signal is difficult,
and special attention should be paid, in many psychophysiolo-
gical studies no attention was paid to the method of spectrum

Fig. 2 Overall structure of emotion recognition system
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estimation (FRIEDMAN and THAYER, 1998). Some efforts have
been made towards accurate spectrum estimation of HRV (PINNA

et al., 1996) in the biomedical signal processing community, but,
in our opinion, no successful guidelines are yet available,
especially for the case of short signal length.

We tried to settle this problem by applying a remarkable piece
of research into the model estimation of short time series,
performed by BROERSEN (2000a; b). Recently, he has concluded
that spectrum estimation methods based on the time-series
model outperform periodogram-based methods, and he clai-
med that a single best time-series model, among autoregressive,
moving average and autoregressive moving average models, can
be selected from given samples of a short segment of signal. The
selection of the best time-series model is based on an index that is
determined to represent the square error of prediction. The index
is derived from thorough empirical investigation of time-series
behaviour. The details of the algorithm for the selection of the
best time-series model, the ARMAsel algorithm, are thoroughly
described in BROERSEN (2000a).

Fig. 4 illustrates the heartbeat detector using R-peak detection.
A Teager energy operator (TEO) was used to detect the R-peak
in the raw ECG signal. The output from the TEO was propor-
tional to the product of instantaneous amplitude and frequency,
and thus it was ideally suited to enhancing the R-peak in the
input ECG signal (MARAGOS et al., 1993). If the baseline drift
was prohibitively high, a median filter was used to estimate the
baseline fluctuation to generate a baseline-removed signal. After
the R-peaks had been detected, the spike train could be
transformed into a continuous time signal called heart rate
variability (HRV) by interpolation and downsampling, as
described in BERGER et al. (1986). From the HRV time series
and its power spectrum determined by ARMAsel, frequency-
domain features representing sub-band powers were extracted.
Two sub-bands that are usually adopted for the spectral analysis
of HRV were selected. The ranges of the low-frequency (LF) and
high-frequency (HF) band were chosen as 0.03–0.15 Hz and
0.15–0.4 Hz, respectively. We did not use a very low-frequency
(VLF) band, as it is difficult reliably to extract a VLF component
from a short segment. Two simple time-domain features,
the mean of the HRV time series and SD of its time-derivative,
were also used as features. For the SD calculation, the outliers
whose values belonged to the largest or smallest 10% were
excluded.

2.3.2 Electrodermal activity: Electrodermal activity (EDA)
was obtained by measurement of the voltage between two
electrodes across which a low-level current was applied.
Fig. 5a shows a typical waveform of EDA under emotional
stimulation (after subtraction of mean EDA level). Important
features of EDA include the DC level and the distinctive short
waveforms that are indicated by arrows in Fig. 5. This is
usually called the skin conductance response (SCR) and
is considered to be useful as it signifies a response to inter-
nal=external stimuli. We developed a method that correctly
detects the occurrence of SCR, as shown in Fig. 5c. After
reducing the sampling rate to 20 samples s�1, differentiation
and subsequent convolution with a 20-point Bartlett window
were performed. This procedure yielded the output waveform
shown in Fig. 5b for the input signal shown in Fig. 5a.

The occurrence of the SCR was detected by finding two
consecutive zero-crossings, from negative to positive and
positive to negative. The amplitude of the SCR was obtained
by finding the maximum value between these two zero-crossings.
The mean DC level of EDA, mean values of the SCR amplitudes
and duration, and number of SCR occurrences in a 50 s signal
segment were extracted from the EDA as features. Detected
SCRs with an amplitude smaller that 10% of the maximum
edical & Biological Engineering & Computing 2004, Vol. 42
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Fig. 3 Block diagram of information extraction module from ECG
SCR amplitude in this segment were excluded. By this
procedure, we could take into account contextual information
on the level of SCR amplitude for the signal under investigation,
which can vary considerably. This is advantageous compared
with conventional SCR detection by visual inspection by a
human supervisor, where the threshold level is determined
arbitrarily, and thus objective analysis can hardly be achieved.
Our method does not require explicit determination of the
threshold level.

2.3.3 Skin temperature variation: No special signal proces-
sing was necessary for the feature extraction from the skin
temperature (SKT). Although frequency-domain analysis of
the time-varying SKT has been reported (SHUSTERMAN and
BARNEA, 1995), here the mean and maximum values within
50 s intervals were used as the features of SKT.

Fig. 4 R-peak detector using TEO and baseline wander removal
using median filter
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2.4 Pattern classification using support vector machine

Feature vectors extracted from multiple subjects under the same
emotional stimulus form a distribution in high-dimensional
space. As no preliminary information on the distribution
of feature vectors is available, we projected them onto two-
dimensional space for visualisation by a Fisher projection
(DUDA et al., 2001) to obtain some knowledge of the difficulty
of discrimination of the feature vectors belonging to different

Fig. 5 (a) Typical waveform of EDA under emotional stimulation.
(b) Output signal from detection module in (a). (c) Block
diagram of SCR detection module. Sampling rate of traces in
(a) and (b) is 21.3 samples s�1.
423



emotional statuses. The projected feature vectors from the same
emotional status formed a cluster with a large amount of
variation, and the clusters of feature vectors from different
emotional statuses significantly overlapped, as shown in Fig. 6.
This is not surprising, because the feature vectors represent the
state of the autonomic nervous system of multiple subjects.
Inter-subject difference in emotional reaction, as well as other
factors influencing the autonomic nervous system, is represented
in the feature vectors.

The recently reported method of PICARD et al. (2001) consists
of dimensionality reduction by a Fisher projection and a subse-
quent quadratic classifier. Their feature vectors were extracted
from a single subject under the condition of deliberate expres-
sion, and it is likely that they form clusters that can be
discriminated with much less effort. The combination of dimen-
sionality reduction and a simple classifier such as the quadratic
classifier was never applicable for our multi-subject problem.
Furthermore, it is generally considered that quadratic classifiers
show poor performance when the number of training samples is
not sufficient, owing to error in the estimated covariance matrix.

Our approach utilises an efficient technique that can deal with a
difficult, high-dimensional classification problem. Without
dimensionality reduction, our system directly gives extracted
feature vectors to the support vector machine (SVM) classifier.
The SVM is based on the property that separation by a linear
classifier becomes more promising after non-linear mapping onto
high-dimensional space (HAYKIN, 1999) and the technique of

Fig. 6 Projection of extracted feature vectors onto two-dimensional
plane using Fisher projection for purpose of visualisation, for
(a) first database and ( b) second database. (s) sadness; (6)
stress; (d) anger
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obtaining a linear classifier with maximum generalisation perfor-
mance derived from the statistical learning theory of VAPNIK

(1999). Successful application of the SVM for various pattern
classification problems has been recently reported (TEFAS et al.,
2001; CHAPELLE et al., 1999). Details of the theory and learning
methods of the SVM can be found in VAPNIK (1999) and BURGES

(1998), and are described in the Appendix.

3 Results

First, we describe the results of each preprocessing and feature
extraction module applied to relevant signals. Fig. 4a shows that
baseline wander (low-frequency fluctuation) can be properly
removed by the median filter-based method. Although identical
HRV time series can be derived from both the ECG and PPG, the
results shown in this Section were all obtained from the ECG.

The output from the TEOþwindow smoothing block is
plotted in Fig. 4b, and it shows that the R-peaks of the ECG
can be effectively detected by this procedure. From the HRV time
series obtained from the interpolation and resampling after the
R-peak detection, as shown in Fig. 3b, an optimum time-series
model was obtained using the ARMAsel algorithm described
above in Section 2, and sub-band powers (low frequency: 0.03–
0.15 Hz; high frequency: 0.15–0.4 Hz) were calculated from the
identified model. The spectrum obtained from the ARMAsel
algorithm was better at increasing the separability between the
stimulated and baseline statuses than the spectrum obtained from
usual periodogram-based techniques, such as Welch’s method. In
addition, by excluding the highest and lowest 10% values of inter-
beat interval (RR time), we could also enhance the separability
between the stimulated and baseline statuses.

We show the result of applying the SCR detection method
to a typical EDA signal in Fig. 5b. The most important merit of
this SCR detection method is that it is not necessary to determine
the threshold level. This level should be varied according to the
change in EDA characteristics, dependent on the subjects, and
the electrodes employed.

The feature vectors of the signals under stimulus were
extracted from the last 50 s segment. Baseline feature vectors
were extracted from the 50 s segments just before the stimulated
segments. Figs 6a and b show the results of a Fisher projection
of the feature vectors obtained from the first and second
databases, respectively. These are shown for the purpose of
visualisation of the difficulty of pattern classification. Three
emotional categories were included. As expected, there were
significant variations in the positions of data points within a
single class. Overlap among different classes was also consider-
able. It is evident that a simple classifier such as a quadratic
classifier is not sufficient for this problem. PICARD et al. (2001)
used the combination of a Fisher projection and a quadratic
classifier and reported a very high emotion recognition ratio.
However, their data were acquired from a single subject, and it
was assumed that emotional status was induced from voluntary
endeavour of the subject, and thus it is natural that intra-cluster
variation and inter-cluster overlap were much smaller compared
with our situation of induced emotion in multiple subjects.

Overall performance was quantified as the percentage of
correctly classified data points (correct classification ratio
(CCR)). For the first year’s database, the CCR was 89.7% for
the training set and 55.2% for the test set, for the classification of
three emotional statuses: sad, stressed and angry. For the second
year’s database, where the signal quality was much better, we
obtained a CCR of 78.4%, for the test set in the case of the three
emotional categories, and 61.8%, for the four emotional cate-
gories: sad, stressed, angry and surprised. The success rates of
each emotion category for the second year’s database are shown
in detail in Table 2 as a contingency table.
edical & Biological Engineering & Computing 2004, Vol. 42



4 Discussion

In this paper, we have shown that the realisation of user-
independent emotion recognition based on physiological signals
is feasible. Although our system was developed based on a
biosignal database obtained from multiple subjects, the ratio of
correct recognition was comparable with that of the previous
systems (PICARD et al., 2001; ARK et al., 1999), which were
developed based on data from single or few subjects. Another
difference of our system compared with the previous ones is that
our algorithm was developed and tested based on the biosignal
database representing the induced emotional status as output of
the external stimuli. It is different from previous studies where
the emotion was intentionally ‘tried and felt’ (PICARD et al.,
2001) or ‘acted out’ (ARK et al., 1999).

Our system is also better fitted for practical applications in two
respects. The required signal monitoring time is significantly
reduced, compared with the system of PICARD et al. (2001) that
requires approximately 2–4 min and that of ARK et al. (1999)
that requires 5 min. Our system does not require the attachment
of electrodes (and electrode paste) to the head, face and scalp. No
burdensome chest belt is necessary. We expect that, eventually,
the sensor module of our system will be implemented as a
wearable piece of hardware, such as a wristwatch-type device,
that is perfectly suitable for everyday use. This will make an
important step towards the realisation of emotional interaction
between man and machine and play an important role in several
applications, such as the human-friendly personal robot. For the
improvement of performance and reliability, the addition of
subjects to the database and further refinement and verification
of emotion induction protocols may be necessary. Additional
features of the physiological signals employed, for example the
frequency-domain feature of SKT, may be considered to
improve recognition performance (SHUSTERMAN and BARNEA,
1995).

As previously mentioned, there are numerous other factors
that could affect the physiological signals, such as physical
activity, cognitive workload and the physical status of subjects.
In addition, although we made every effort to minimise the
inclusion of these factors in our paradigms, it is probable that a
considerable amount of change in physiological signals could
occur owing to these confounding factors. Moreover, the basic
assumption that different emotions have a more or less unique
and person-independent physiological response remains ques-
tionable. This could be reflected in the fact that the recognition
rate falls off with the number of emotion categories. These
uncertainties could be an important cause that deteriorated the
recognition ratio and troubled the model selection of the SVM.

Table 2 Contingency table showing recognition results for each
emotion category for second year’s database, with three and four
emotional statuses. Figures denote number of subjects

Recognition result (three emotional statuses)

Original status Sadness Anger Stress

Sadness 10 4 3
Anger 0 16 1
Stress 2 1 14

Recognition result (four emotional statuses)

Original status Sadness Anger Stress Surprise

Sadness 11 2 3 1
Anger 0 13 4 0
Stress 1 5 10 1
Surprise 3 4 2 8
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It seems worth trying to devise a method to estimate reliably
the true class label, i.e. to have knowledge of the true
emotional status of a subject under consideration. Recent
studies on emotion utilising advanced functional neuro-
imaging techniques are encouraging (PHAN et al., 2002) in
this regard. If we have a means to visualise a specific brain
region engaging in a specific emotional status, it will become
more feasible to have ‘ground truth’ on the actual emotional
status of the subject. At present, this is hard to obtain, and our
physiological signal database is far from complete. Other
techniques, such as facial muscle activity monitoring, might
be helpful for this purpose, although they are not suitable for a
practical emotion recognition system. A novel method for the
verification of emotional status must be devised before it will
be possible to say that physiological signal-based emotion
recognition is a practicable and reliable way of enabling
human–computer interaction with emotion-understanding
capability.

5 Conclusions

We have developed a novel emotion recognition system based
on the processing of physiological signals. This system shows a
recognition ratio much higher than chance probability, i.e.
33.3% and 25% for three and four emotion categories, respec-
tively, when applied to physiological signal databases obtained
from tens to hundreds of subjects. The advantages of our system
include the reduction of required signal monitoring time, applic-
ability to multiple users and the use of signals that cause the
minimum amount of user inconvenience. The system consists of
characteristic waveform detection, feature extraction and pattern
classification stages. A support vector machine was utilised as a
pattern classifier to overcome the difficulty in pattern classifica-
tion due to the large amount of within-class variation of features
and the overlap between classes, although the features were
carefully extracted. Correct classification ratios for 50 subjects
were 78.43% and 61.76%, for the recognition of three and four
categories, respectively.

Appendix

Pattern classification using support vector machine

Here, we briefly describe the principle of pattern classification
using the SVM. A two-class classification problem is assumed
for simplification. The problem of finding a linear classifier for
given data points with a known class label can be described as a
problem of finding a separating hyperplane wT xþ b that
satisfies

yi(w
Txi þ b)5 1, for i ¼ 1, 2, . . . , N (1)

where xi and yi 2 {þ1, �1} denote a feature vector and its given
correct class label, respectively. If it is not possible to classify
them with a linear classifier, as is the case with most practical
problems, the problem can be described in a less strict form as
follows:

yi(w
Txi þ b)5 1 � xi, for i ¼ 1, 2, . . . , N (2)

Here, xi is called a slack variable, and it represents deviation
from the ideal condition of linear separability. We can pose a
problem of finding the optimum one among the separating
hyperplanes by minimisation of the cost function
(1=2)wTwþ C

PN
i¼1 xi subject to the constraints

yi(w
Txi þ b)5 1 � xi, for i ¼ 1, 2, . . . , N

xi 5 0 for i ¼ 1, 2, . . . , N
(3)
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The above cost function is defined so that its minimisation
coincides with the maximisation of margin and minimisation
of classification error under the constraint of (3).

This constrained optimisation problem can be solved by using
the Lagrange multiplier method (DUDA et al., 2001). From the
theory of the Lagrange multiplier method, it can be shown that
the above problem can be expressed as a problem of finding
Lagrange multipliers ais as follows: given the training set {(xi,
yi), i¼ 1, 2, . . . ,N}, find ais that maximise the objective function
Q(a1, a2, . . . , aN), i.e.

maximise Q(a1, a2, . . . , aN )

¼
XN
i¼1

ai �
1

2

XN
i¼1

XN
i¼1

aiajyiyjx
T
i xi

subject to
XN
i¼1

aiyi 5 0 and 04ai 4C

for i¼1, 2, . . . , N

(4)

This is called the dual problem of the original problem that seeks
to find the optimum separating hyperplane. After finding ais, the
classification of a data point xnew is performed as

f (xnew) ¼ sign
XL
i¼1

yiaix
T
new xi þ b

 !
(5)

Here L is the number of support vectors obtained from the
maximisation. The relationship between the parameter of hyper-
plane w and the Lagrange multiplier ai is given as w ¼PL

i¼1 yiaixi. Actually, the SVM algorithm adopts a preliminary
non-linear mapping to higher-dimensional feature space before
the linear discrimination. The feature space is hidden from both
input and output. The rationale for the non-linear mapping is
taken from the Cover theorem (HAYKIN, 1999). It states that a
non-linear mapping to high dimension increases the likelihood
of linear separation (BURGES, 1998). The decision function is
now expressed as follows, instead of (5):

f (xnew) ¼ sign
XL
i¼1

yiai{w(xnew)}T � w(xi) þ b

 !
(6)

Here w(x) denotes the non-linear mapping to high dimension.
Obviously, the objective function should also be changed
by substituting {w(xi)}

T
� w(xi) for xTi xi in (4). Previous

expressions involve computation of an inner product in high-
dimensional space. In practice, an inner-product kernel
K(xnew, xi) ¼w(xnew) � w(xi) is used instead of direct calculation
of the inner product in high dimension. Not every mapping w(x)
can be expressed in this fashion, and the criteria are stated by
Mercer’s theorem (BURGES, 1998). Here, we used a Gaussian
kernel. Finally, the decision rule of a given data point is

f (xnew) ¼ sign
XL
i¼1

yiaiK(xnew, xi) þ b

 !
(7)

For the general multiclass classification problem where the
number of classes is larger than 2, ‘one-against-one’ and ‘one-
against-all’ approaches can be used. The former method uses
k=(k� 1)=2 classifiers, each of which is trained to separate two
different classes of a total of k classes, and the best class label for
a specific input vector is determined from voting. It is generally
accepted that the ‘one-against-one approach’ gives a better result
(KNERR et al., 1990). Five-fold cross-validation (DUDA et al.,
2001) is used to determine the final parameters of the classifier.
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