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Abstract:  We demonstrate the ability of the system based on a new multimodal 
Virtual Joystick interface to recognize the fatigue state for a person who is caring out 
activity by using this device like an input one. In this way we develop a method to 
recognize the fatigue state and to enable a digital computer to sense the user’s state. 
To pursuit this goal several methods of signal processing, feature extractor and pattern 
recognition algorithms are used. Moreover, a methodology used to identify the fatigue 
state was developed. The Virtual Joystick device is able to sense and track the 3D-
hand movement without any physical contact and, simultaneously, to acquire a 
reliable hand tremor signal. The Virtual Joystick can replace a standard joystick and, 
more than that, when it receives a request, it has the ability to send, through PC serial 
line, the continuously acquired tremor signal.  

1 Introduction 

Building high performance interactive computer systems and other “intelligent” 
systems requires the understanding of both the physical, psychological, emotional 
user’s state and the mode in which a user interacts with such systems. Moreover, 
the human efficiency in the activity related to the human-computer interaction (or, 
more general, human-machine interaction) are directly dependent on both, the 
subject’s state and the capability of the systems to recognize the specific needs of 
the user and to change their response accordingly. Unfortunately, acquiring and 
interpreting this kind of information is very difficult and, in consequence, the 
present day systems have only a limited ability of communication. Current 
strategies for user’s state acquisition are either obtrusive (only a few of them are 
not) or, the data, captured by the systems, consist in a raw information (keystrokes, 
mouse and standard joystick movements). 

Physiological variables have been traditionally used to measure the changes in 
physical, psychological and emotional state. Typically, biological signals like: 
heart rate [1], [2], blood pressure [2], [3], galvanic skin response (GSR) [1], [2], 
[3], temperature [1], [2], [4], respiration [2], [3], [4], somatic movement, as well as 
electromyography (EMG) [3], electrocardiography (ECG) and 
electroencefalography (EEG) are used for this purpose.  

 
 
 
 
 
 
 
 

 
 

Fig. 1 – The three sensors and the electronic processing system – the Virtual Joystick 
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In our study we use the tremor signal to identify the fatigue state; the signal is 
acquired with a Virtual Joystick. The Virtual Joystick system was developed by us 
starting with the sensor [5], [6], the electronic control unit [7], [8], the software 
used to interface with the device (used to present the hand position in the input 3D 
space and to transfer, save and show the tremor signal) [8] and ending with the 
module used to compensate the hand variability and to filter the noise introduced 
by the joystick port acquisition system [9].  

The Virtual Joystick has three transducers to perform the hand tracking 
procedure. In figure 1, we show a picture with the practical implementation of the 
system. The operating principle of the transducers [5], that are part of the Virtual 
Joystick, is based on the property that an element generating an external 
electromagnetic field changes its impedance due to the properties of the objects in 
its close vicinity. When the hand is above one of the sensors, the output of the 
corresponding circuit has a high value. The sensors that sense left-right balance are 
placed symmetrically on the board and are paired, such that the signal from a 
couple of opposite sensors evidences the balance movements of the hand. The 
principle is similar when detecting the forward and backward movements. The 
distance between the proximity sensor and the hand is another factor that can 
influence the magnitude of the output signal on the corresponding channel. It is 
used for a supplementary control. 

The Virtual Joystick projects the hand movement in the 3D input space through 
the standard joystick interface and, when the function of tremor acquisition is used, 
this signal will be send through the standard serial line. 

The paper is organized as following: in sections 2 and 3 the methodology, the 
reason of the specific acquiring mode and the extracted features, all related to the 
tremor signal, are presented. In section 4, we show that the new input device 
acquires and preserves all components from the tremor signal. In the next two 
sections, the method used to highlight the existence of different physiological and 
psychic fatigue states reflected in the tremor signal, the classifier system, and the 
performances obtained are presented. The last section concludes the paper. 

 

2. The subjects and methods 

2.1. The subjects 

We admitted six (healthy people) subjects for this study. Two of them are 
women and the rest are male. Five of them are young people (26.6 ± 3 years, mean 
± standard deviation) and only one is 53-years old man. An informed consent was 
obtained from all the subjects. 

2.2. The protocols  

In a session of recording, each subject effectuated four recordings. Each subject 
carried out 90 seconds of tremor recordings followed by other subjects until all 
subjects completed four such recordings. In the last cycle, before the hand tremor 
acquisition, the subjects were required to hold in their hands an object (weighting 
about 4 Kg) until they were unable to keep it any more. In this way fatigue was 



induced. Per day two sessions of recordings were done. One session was made at 
800 a.m. in the morning, when all the subjects were assumed to be rested, and the 
second was made at 1430, in the afternoon, when we considered that all the subjects 
were already tired. In all this time, between these two sessions, the subjects were 
requested to do the usual daily activity.  The recordings were made during a period 
of seven days. In all recording cycles the subjects were asked to maintain the same 
position of the hand above the bottom (bigger one) Virtual Joystick sensor. The 
initial position was with the hand placed parallel with the transducer and the center 
of the palm pointing exactly to the center of the transducer. All the users fixed the 
hand at the same vertical distance from the sensor, marked by a rule maintained in 
the position by a support. The subjects were seating. Because fatigue is expected to 
influence the last part of the 90 seconds of the recording cycle, only the first 20 
seconds and the last 20 seconds have been stored and analysed. In all the time the 
subjects had no visual control of the hand position neither directly, nor though 
visual interface. In this mode, we prevented any possibility of biofeedback. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 – A view with the main window of the PC program, with the dot representing the hand sensed 

by the Virtual Joystick 
For the research described here, the sampling rate was 250 samples per second 

and we got 10.000 samples per each cycle of recordings: 5.000 corresponding to 
the first 20 seconds and the others corresponding to the last 20 seconds of 
recordings. Based on each of the 20 seconds segments, we extracted nine features. 
Two features vectors of nine features characterize a cycle for one subject. In a 
session, 48 points in a nine dimensional features space were collected (2 features 
vectors/cycle/user x 4 cycles x 6 users). Thus, in a day, 96 points and, respectively, 
at the end of seven days, 672 vectors of features were obtained. 

The software used to manage the tremor acquisition and to store the data was 
written in MicrosoftTM Visual C++ with the Measurement Studio 
ComponentWorks++ from the National InstrumentsTM and it is a improved version 
of the software presented in [8] and [9]. 

3. Signal processing 

The signal-processing phase combines two stages: the pre-processing part, used 
to remove the main perturbation, and the feature extraction stage that was used to 
differentiate between the two physical states, rested and tired. 
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3.1. Pre-processing 

In our system the Virtual Joystick device low-pass pre-filtered the tremor signal 
at 60 Hz with an external, linear phase response, digital filter (a Bessel filter).  
Then, the signal was sampled with a frequency of 250 Hz and digitised on 12 bits. 
Figure 3 presents one of these signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 – Example of tremor signal and some of the pre-processing steps 
 

The tremor is a complex movement, composed by components derived from the 
respiratory movements and from other movements, unrelated with tremor like heart 
movements. The respiration, also, contributes at the low frequency spectrum of the 
hand tremor signal. These components must be removed, knowing that the 
respiration has a basic frequency around 0.1 up to 0.3 Hz for adult subject with a 
band in the range of 0.05 to maximum 3 Hz. After the PC software receives, in a 
serial mode, the tremor signal, figure 3(a), a high-pass filtering at 1 Hz is applied, 
figure 3(b). After smoothing the resulting signal, the software gets the signal 
shown in figure 3(c). Using the moving average method with a window of 10 
samples did the smoothing. 

Mainly, because parts of the extracted parameters are in the frequency domain 
and because an accurate spectral measurement is wanted, a windowing technique 
was used to minimize the spectral leakage problem. The Hanning window was 
chosen based on its good frequency resolution (the width of the main lobe at –3dB 
is 1.44 bins) and base on it low spectral leakage (the side lobes roll-off rate is 60 
dB/decade). 

3.2. Choice of the features 

Nine parameters are extracted from the tremor time series for each particular 
recording. These parameters are: the main frequency, the frequency spreading, the 
width of the main frequency component, the variance of the width for the main 
frequency component, the power of the signal, the power variance, the high-
frequency content to low frequency content ratio, named “high-to-low ratio”, the 
variance of the high-to-low ratio, and the signal standard deviation. 



The “main frequency” component is defined as the frequency corresponding to 
the highest peek in the Fourier spectrum, figure 3(d). The “main frequency” of the 
tremor signal is an important parameter and most of the researchers use it [10], 
[11]. To estimate the actual “main frequency“ and to overcome the picket-fence 
effect, we perform a weighted average of the frequency around maximum detected 
peak in the power spectrum. Namely we used: 
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where Power(i) is the power of the ith bin, j the index of the highest detected pick, 
and ? f = fs/N (fs – the sampling rate, N – number of window points). In this case, fs 
= 250 Hz and N = 1024 samples, ? f = 0.244 Hz. A moving window of 1024 
samples was used only for the algorithms that determine the “main frequency”, 
frequency spreading and the width of the main frequency component. Choice is 
justified by the reason to get a very good frequency resolution. For the other 
features, the window was of 512 samples. The choice of the span parameter in the 
range ±3 is suitable for two reasons. First, because it represents a spread wider than 
the main lobe of the Hanning window and second, from the point of view of the 
tremor signal, it is wide enough and, also, the possibility of interfering with a 
possible second main frequency component is lower. 

The width of the main frequency component was estimated with the relation: 
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where NPBW is the noise power bandwidth of the window. 
We have confirmed the remark [12], observed in several cases, that under 

muscular effort the tremor signal spectrum starts to change significantly (the main 
frequency decreases and the movement becomes more regular with lower contents 
in higher frequency). Based on these facts, another parameter was chosen in order 
to discriminate between the rested and the tired state. This parameter is the ratio 
between the low frequency region and the high frequency region energy in the 
spectrum, using the threshold of 6 Hz. This boundary frequency is assumed to exist 
between the “low-frequency tremor” and the “high-frequency tremor” [13]. 
Physicians fixed this boundary parameter starting from a pathological point of view 
related with the tremor signals. In our case, with all the subjects in a healthy 
condition, after the visualization of the spectral components, we determined that 
the power of the signals concentrated around the lower part of the spectrum and 
only a small quantity is past the 6 Hz boundary.  Therefore, we tested the 
hypothesis that the 4 Hz boundary, used in the previously defined parameter, is 
more appropriate for ours objectives or it is not. 



4. The ability of the sensor to acquire tremor signals 

From the beginning, one of the main requirement imposed to the Virtual 
Joystick design was its ability to acquire a tremor signal and simultaneously the 
hand movement. This should happen without any compromise in the hand tracking 
mechanism and in the quality of the tremor signal. The tremor signal must be a 
very reliable one. It must preserve all non-linear stochastic or chaotic components 
that a classification system can take advantage from. Previous researches [12], [14] 
indicate that tremor includes a significant nonlinear, chaotic component, but 
stochastic components are also expected [12], [14], [15]. 

The objectives mentioned above was achieved by using a set of techniques (soft 
and hard) and technologies dedicated to this goal [8] as following:  
• the bandwidth of the transducer is appropriate for the acquisition of the tremor 

signal [5]; basically, this is due to the high frequency operation of the sensors;  
• the mode of setting the work of the sensor in the linearity part of the sensor 

characteristic;  
• the processing techniques involved in the tremor path of the signal, like filters 

with linear phase characteristic; 
• the precaution used to acquire the tremor signal, the sampling rate, the number 

of bits used by the converter (12 bits) – mainly because the sampling and 
quantization noise can generate unreliable results, destroying the noise 
sensitive nonlinear information in the tremor signal;  

• the software solution used in the subroutine implied in the data transfer 
between the multimodal virtual joystick and the PC (the serial transfer between 
the joystick and the personal computer take a lot of time. For this reason, a 
different thread of program execution was dedicated to the tremor signal 
transfer and, in this mode, we had no interference between the hand tracking 
part of the system and the tremor transfer). 

In [10], the nonlinear analysis was performed with the help of the correlation 
dimension and the Lyapunov exponent. The values of the Lyapunov exponent 
started with almost 0 (0.05) and went up to 0.7; the correlation dimension of the 
tremor signal was in the range of 0.5 up to 5, but many of the recordings exhibited 
a correlation dimension value in the range 2.5 to 3. 

To determine the correlation dimension and the Lyapunov exponent, we first 
need to establish the embedding dimension value for the state space reconstruction. 
For this, the mutual information function [16] was used to determine the optimal 
value of the time delay parameter. The obtained time delay parameter was around 
33 for most of the tremor series, like in figure 4(a). The minimum embedding 
dimension was, then, calculated for a one-dimensional time tremor series by using 
the time delay information as the input parameter for the False Nearest Neighbours 
method applied for this. In figure 4(b), we are present the results for one tremor 
time series, randomly chosen for our analysis. The resulting minimum percent of 
false neighbours was reached somewhere around the embedded dimension of 5. 
For almost all time series, the embedding dimension resides in the range from 5 to 
9. But, for a few number of time series the embedding dimension is equal with 10. 



All of the above determinations were completed with the Visual Recurrence 
Analysis [17] program, version 4.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4 – (a) average mutual information and (b) embedding dimension for a time series 
 

First, the correlation dimension (CD) was calculated in order to get an image 
about the level of “complexity” of the associated time series. The correlation 
dimension of the processed tremor signal was in the range 2.572 to 4.407. In all 
analysis performed the tremor signal was high pass filtered at 1 Hz and smoothed 
with a moving window of 10 samples. The chaotic character of the time tremor 
series was tested using Lyapunov exponents. The values found for the Lyapunov 
exponent were in the range [0.04, 0.18]. This range shows the presence of a “light” 
chaotic behaviour. 

 5. The fatigue state analysis 

The number of clusters for the data set can be determined: (1) a priory, (2) 
automatically, by using a cluster validity measure [18], (3) by an iterative process 
of inserting a new cluster centre in the algorithm [19], until a validity measure 
begins to decrease, or by a method of combining the already existing clusters. In 
this research, an iterative process was used to determine the correct number of 
clusters. 

In spite that the problem we tried to solve seems to be a quite simple one – we 
may assume to have two classes (rested and tired subjects) – the problem is not that 
simple. The first attempts to directly classify the features vectors extracted from the 
tremor signal in two classes gave poor results. From the starting point, in the 
recording methodology, we took into consideration several distinct situations. In 
the data sets acquired in the morning at least two different categories it can be 
distinguished: the recordings effectuated after the subjects were asked to keep in 
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their hand a heavy load (thus, fatigue was induced by force), and second, the other 
recordings. In a similar way, we can distinguish between two categories in the 
recordings obtained during the afternoon. Several questions may arise. Does there 
exist any difference between the fatigue induced in the morning by short periods of 
intense muscular activity and the neuro-muscular fatigue state attained in the 
afternoon? Is it possible that the first one to be pure physiological fatigue while the 
second one to be a combination between physiological and neuro-muscular or 
psychological fatigue state? Is it possible to make a difference between these two 
fatigue states, supposed different? To answer the above questions, we used a k-
means clustering algorithm on two different sets of data, in order to discriminate 
between some of the cases previously presented.  

To get an idea of how well separated are the clusters, a silhouette parameter was 
calculated for each features vectors. The silhouette parameter represents a measure 
of how similar is a point with the points from the right cluster compared with the 
points from the other clusters. The value of the silhouette parameter is in the range 
-1 to 1. If the silhouette takes the value 1, the object is well classified and it is very 
distant from the neighbouring clusters. A zero value symbolizes points that are not 
distinctly in one cluster or another; and, in the mean time, a value of -1 means that 
the point was badly classified. Let us suppose that we have found a clustering of 
the objects into k groups; A is the cluster to which the features vector xi belongs to, 
and Ck represents any cluster different from A. Then, the silhouette parameter is 
defined as: 
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and ( )ji xxd ,  represents the distance between ix  and jx features vector; { }Ano  is 

the number of elements that compose the cluster A. 
In [20] it was proposed, for the first time, the idea of using the mean silhouette 

parameter in order to assess, determine and estimate the optimal number of the 
clusters. The method chooses the optimal number of clusters, which is the number 
of clusters that maximize the average silhouette value over the entire data set. The 
experience has led us to the subjective interpretation of the silhouette coefficient as 
listed in table 1. 

Because the k-means algorithm faces several problems (like sensitivity to noise 
data and outliers, the cluster must to have a convex shape, the cluster algorithm 



often terminates in a local minimum) a number of precautions must be taken. All 
the results presented bellow were chosen by selecting the best one from a sets of 
several results obtained from the ten repeated instance of the clustering algorithm, 
each with a new set of initial clusters centroid position; in this mode we tried to 
overcame the possibility to be captive in a local optimum. To eliminate the outlier 
problem, we worked with two different data sets. In the first one, all the particular 
data segment sets were eliminated if at least one feature was outside the range [-3s , 
+3s ], where s  represents the spreading of the particular feature. In the second one, 
the range was reduced to [-2s , +2s ]. The results presented below are obtained 
using the first set; this is mostly because no significant results were observed with 
the reduced data sets and, more, because we need, in the second step (when we 
classify the data) to have a large training set. 

Table 1 

 Interpretation of the silhouette coefficient 

Silhouette value Interpretation 
0.71  …  1.00 Strong structures have been found. 
0.51  …  0.70 Reasonable structures have been.  

0.26  …  0.50 The structures are weak and could be artificial try another 
methods. 

< 0.25 No substantial structure has been found. 
 
In the first test, only the data set acquired in the morning was used. In this way 

we want to see if there exist a difference between the fatigue state induced by force 
and the normal, resting state. The clustering algorithm was started, for the 
beginning, with two clusters. After the iterative process – consisting in features 
vectors reassignments and clusters centres re-calculating – was finished, the plot 
for the silhouette parameters for the entire data set was computed and presented in 
figure 5(a). These results were obtained using the 6Hz boundary for the ratio 
between the low frequency region and the high frequency region power parameter 
in the features vector.  

 
 
 
 
 
 
 
 

 
Fig. 5 – The silhouette plot for (a) two classes, (b) three classes - for all recordings  

acquired in the morning. 
 

The mean value of the silhouette parameter was 0.3905 for the case with two 
classes. When we increased the number of the clusters, the average silhouette took 
the value of 0.3539 for the particular case with three classes; when we further 
increased the number of clusters, the average silhouette decreased continuously. 

(a) 
 

(b) 



We conclude that the correct number of clusters is two, this highlighting the 
possibility to differentiate between the two cases presented. 

In order to appropriately estimate the frequency boundary value for the high to 
low ratio parameter, the k-means clustering algorithm was restarted with a new set 
of features vectors, using this time the 4 Hz boundary value and preserving the 
other condition previously presented. The mean value for the silhouette parameter 
was 0.3904 in the case of two classes and 0.3536 for three classes and continued to 
decrease when we increased the number of classes. These observations suggest that 
no important improvements can be reached when 4 Hz boundary was used. 

In the second test, we tested the possibility to differentiate between the fatigue 
state induced by force and the fatigue state that is occurring normally at the end of 
the workday. To differentiate between the two fatigue states, the training set was 
composed only by the recordings acquired in the morning, in the condition of 
fatigue state induced by force, and by the entire set recorded in the afternoon. The 
average silhouette value for the two classes was 0.4074 and it went up to 0.4565 
for the case of three classes; after that, it started to decrease with the increasing 
number of the classes. For example, for three classes the mean silhouette value 
took the value of 0.374. The boundary for high-to-low ratio parameter was 6 Hz. 

 
 
 
 
 
 
 
 
 

 
Fig. 6 – The silhouette plot for (a) two, (b) three and (c) four classes; using the 6 Hz boundary for 

high-to-low ratio parameter. 
 

When the boundary was set at 4 Hz, the mean silhouette value, according to 
figure 7, took the 0.4074 value for two classes, 0.4566 for three classes and 0.3738 
for four classes. Once again we do not observe any significant improvement. 

 
 
 
 
 
 
 
 

Fig. 7 – The silhouette plot for (a) two, (b) three and (c) four classes; using the 4 Hz boundary for 
high-to-low ratio parameter. 

 
As a conclusion, we found to be of real interest the ability to differentiate not 

only between the fatigue state induced by force (mainly muscular fatigue) and the 
fatigue state normally installed at the end of the workday, but more - in the data 
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sets recorded in the afternoon, we can differentiate between the two particular 
fatigue states.  

Notice that in table 1 for our range of mean silhouette values, one of the 
possible interpretation is that the structures observed could be artificial and, in 
conclusion, the entire analysis presented above could be false. But, because we 
know the labels of the features vectors and based on the results presented in the 
next section, we concluded that the hypotheses of weak data structures is the 
correct one. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 8 – The diagonal covariance matrix for the output of the PCA network; where on the diagonal are 
the eigenvalues 

6. Classification of the subject state 

In order to develop a deeper understanding of the features space complexity, we 
used PCA to visualize if there exist clear structures in the new set of data (principal 
components data) obtained at the output of the PCA networks. The analysis was 
done for all data sets and for all subjects. In the next part of the PCA analysis, the 
results are presented only for one subject data set. We used for the visualisation 
only the first six outputs of the PCA network. These outputs represent 96.983 % of 
the power of all the features involved. In figure 8, we present the weights of the 
forced Hebbian network. The Hebbian network was used to compute the 
covariance matrix of the PCA outputs data sets. The diagonal elements of the 
covariance matrix are the eigenvalues of the PCA output data sets.  

In spite of the fact that in the projected eigenvector space the data cluster in 
some parts of the space, figure 9(a) and (b), the overall impression is that the data 
from both classes are scattered and mixed in all the space and no clear clusters can 
be found. This conclusion was derived after several visualisations, made for 
different angles of the 3D space and for all possible combinations of the first six 
eigenvectors. This reason, a Support Vector Machines was chosen for the 
classification part; its main idea is that in a high dimensional space, the data 
become linearly separable. 

The Support Vector Machine (SVM) was implemented in NeuroSolution (a 
demo version), by using the kernel Adatron algorithm [21]. The kernel Adatron 
algorithm is an on-line version of the Vapnik’s original algorithm and it is effective 
in separating sets of data which share complex boundaries, like in our case. After a 
map into a high-dimensional feature space is accomplished, the algorithm 
optimally separates data into their respective classes by isolating those inputs that 

 



 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9 – Two distribution of the user state (rest-triangle/tired-square) on the (a) first, fifth and sixth 
eigenvector axes space and (b) third, fifth and sixth eigenvector axes space 

 
fall close to the data boundaries in order to maximize the output perceptron 
margins. The two classes described by the support vector machine classifier can be 
expanded to a N-classes classifier (in our situation N = 4). This could be done by 
constructing N classifiers each one classifying two classes ({class i} versus {class 
1...N / except i) and, then, determining the correct class (choose the class that 
yields the maximum value among the all N classifiers). 

 
 
 
 
 
 
 
 

 
Fig. 10 – The support vector machine network implemented in the NeoroSolution environment and 

the performance obtained on a test set  

Table 2 

The confusion matrix for the experiment results 

 Rested Fatigue 

Rested 85.71 % 14.29 % 

Fatigue 68.42 % 31.58 % 

 
In figure 10, we exemplify with the network that classifies the rested and the 

tired states. The rested state is represented by all the recordings acquired in the 
morning but without the recordings’ parts where the fatigue was induced by force 
(the recordings made after the subjects were asked to keep in their hand a heavy 
load); the rest of the recordings represents the tired state. The performance of the 
classifier is shown in table 2. Although these results are preliminary, we observe 
good performance of 31.57 % correct status recognition in the case of tired state 

(a) (b) 

 
 

 



and 85.71 % for the rested state. Because we are interested only in discovering the 
tired subjects, this preliminary result is promising. These results are good, because 
we identify the tired state only from the tremor signal and do not use other type of 
information. 

The results for the cases when we tried to discriminate between the fatigue 
states – induced by force in the morning or in the afternoon – and the other states 
were very weak. This happens because both training sets are not statistical 
representative. If we consider only the case of the fatigue induced by force in the 
morning, this data set represent 11.86 % (69 features vectors) from the entire data 
set. Moreover, if we take into account the cross validation and the test sets 
extracted from the same original data set, we can get a clear image regarding the 
poor results. 

When we used the high-to-low ratio parameter with the 4 Hz boundary in the 
Support Vector Machine classification algorithm no important improvements were 
observed. Based on this observation and from the ones presented above we can 
conclude that the 4 Hz frequency boundary do not offer superior performances.  

7. Conclusions 

Tremor assessment in medical investigation is not a well-developed technique 
yet. Apart the assessment of Parkinsonian tremor, the mechanics of tremor 
generation in normal subjects and in several conditions like diseases, intoxication, 
and age-related conditions is not well understood. Tremor in normal subjects has 
been known for a long time to be related to emotion and fatigue, but the 
mechanisms producing these tremor movements and the specific characteristics of 
such tremor movements are not well known. 

Tremor signal analysis is not a simple task, from the engineering point of view. 
Apart the acquisition problem, requiring non-contact transducers able to pick-up 
the movements of different parts of the hand, the superposition of various types of 
non-tremor movements asks for a signal separation technique. Classification of 
tremor movements is somewhat blind, because little is known on the classes, from 
the medical point of view. But, as we can see from the reported results, in the 
tremor signal it exists significant information related to the subject state. But, more 
must be done in this direction in order to obtain a reliable decision system. 

In this research, we presented several new results related to analysing, 
classifying, and assessing tremor movements, in view of applications in man-
machine intelligent interfaces and in medicine. 
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