"Computer-Aided Analysis of Electronic Circuits"
Course Notes 2

Bachelor: Telecommunication Technologies and Systems
Year of Study: 2

Lecturer: Dan Burdia, PhD
Contents

• I. Introduction in Computer-Aided Analysis.

• II. Computer Circuit Models of Electronic Devices and Components

• III. Network Topology: The Key to Computer Formulation of the Kirchhoff Laws

• IV. Nodal Linear Network Analysis: Algorithms and Computational Methods

• V. Nodal Nonlinear Resistive Network Analysis: Algorithms and Computational Methods
Chapter II - Computer Circuit Models of Electronic Devices and Components.

- 2.1 Basic set of devices for circuit modeling
- 2.2 Hierarchies and types of models
- 1.3 Considerations on model development
- 1.4 Examples of device modeling (diode, bipolar transistor)
1.1 Basic set of devices for circuit modeling

Basic set includes 5 types of devices

- **R** (resistor)
 - Linear resistor: \(v = R i \), \(i = G v \)
 - Non-linear resistor: ex: \(i = g(v) \)
- **L** (inductor) – linear or non-linear
- **C** (capacitor) – linear or non-linear
- Independent sources
 - Voltage source
 - Current source
- Controlled sources
 - Voltage controlled
 - \(E \) – voltage source; \(G \) – current source
 - Current controlled
 - \(H \) – voltage source; \(F \) – current source
2.2 Hierarchies and types of models

- **Criterias: dynamic range, frequency bandwidth**
- **Dynamic range criteria**
 - Global models
 - Local model
 - Linear-incremental models
- **Frequency bandwidth criteria**
 - DC models
 - AC models
2.2.1 Dynamic range criteria - example of models for BT

Bipolar transistor
Schematic symbol

Exact static output characteristics

Global model

Local model

Linear-incremental model (small signal model)
2.2.2 Frequency range criteria - example

Thin film chip resistor models

- DC Model
- Low Frequency Model
- High Frequency Model
- High Frequency Model with external inductance and capacitance

Symbols:
- R: resistance
- L: internal inductance
- C: internal shunt capacitance
- L_{C}: external connection inductance
- C_{G}: external capacitance to ground
2.2.3 Model hierarchy

AC Global Model → AC Local Model → AC Linear Model

DC Global Model → DC Local Model → DC Linear Model

AC Global Model = Large Signal Model
AC Linear Model = Small Signal Model
2.3 Foundation of model development

- No matter what approach is used to construct a model for a physical device, its validity depends on how well the model does indeed predict the behavior of the physical device.

- **Validity of the models for linear systems**

- **Representation Theorem for Linear Systems:** Let Na and Nb be two $(n+1)$-terminal linear black boxes. Suppose that both Na and Nb are driven by n arbitrarily prescribed **sinusoidal** sources and suppose that the sources connected to corresponding terminals of Na and Nb are identical. If the complete response of the corresponding terminals of Na and Nb are identical under the described excitation scheme, then Na and Nb are equivalent to each other in the sense that they will always possess identical response under any other corresponding excitations.
2.3 Foundation of model development

- **Validity of the models for non-linear systems**
 - Can be established the validity of the DC Global and DC Local Models

 - *For non-linear AC Global and AC local models the characteristic curves depend on frequency, they are not unique.*

- Two approaches are used for synthesizing AC non-linear models
 - Physical approach
 - Black-box approach

- **Physical approach:** starting from physical structure and operating mechanisms of a given device to obtain a circuit model.

- **Black-box approach:**
 - Firstly, a valid DC global model is obtained.
 - Then, capacitors and inductors are added at one or more strategic locations to assure the behavior in the frequency domain.
2.3 Foundation of model development

Example: Thermistor circuit model

- Physical approach: Resistance – Temperature variation
 \[v = R_0(T_0) \exp \left[\beta \left(\frac{1}{T} - \frac{1}{T_0} \right) \right] \cdot i \triangleq R(T) \cdot i \]

- Black-box approach: Power dissipation – Temperature variation
 \[p(t) = v(t) \cdot i(t) = \delta(T - T_0) + C \frac{dT}{dt} \]

- Circuit model
2.4 Examples of semiconductor device modeling

- 2.4.1 Diode circuit model
- 2.4.2 Bipolar transistor circuit model

Diode circuit model

- AC global model

![Schematic symbol](image) \[\implies\] \[\text{Diode AC global model}\]

- RS - series resistor of diode terminals
- \(I_D(\text{V}_D) \) - Voltage-Controlled Current Source describing I-V diode DC characteristic
- \(C_j \) - Barrier capacitance
- \(C_d \) - Diffusion capacitance
Diode circuit model

DC Global model
Diode circuit model

DC Global model - I-V expressions

\[I_D = A \cdot (I_{fwd} - I_{rev}) \]

Forward current

\[I_{fwd} = I_{nrm} K_{inj} + I_{rec} K_{gen} \]

Normal current

\[I_{nrm} = I_S \cdot \left[\exp\left(\frac{V_D}{N \cdot U_T} \right) - 1 \right] \]

Recombination current

\[I_{rec} = I_{SR} \left[\exp\left(\frac{V_D}{NR \cdot U_T} \right) - 1 \right] \]

\[K_{inj} = \begin{cases} \sqrt{\frac{I_{KF}}{I_{KF} + I_{nrm}}} & \text{dacă } I_{KF} \geq 0 \\ \frac{1}{I_{KF} + I_{nrm}} & \text{dacă } I_{KF} < 0 \end{cases} \]
Diode circuit model

DC Global model - I-V expressions

Reverse current

\[I_{\text{rev}} = I_{\text{rev_high}} + I_{\text{rev_low}} \]

\[I_{\text{rev_high}} = IBV \cdot \exp \left(-\frac{V_D + BV}{NBV \cdot U_T} \right) \]

\[I_{\text{rev_low}} = IBVL \cdot \exp \left(-\frac{V_D - BV}{NBVL \cdot U_T} \right) \]

BV – breakdown voltage

IBV, IBVL, NBV and NBVL = diode model parameters
Diode circuit model

Capacitance modeling

\[C = C_d + A \cdot C_j \]

\(C_d \) – diffusion capacitance

\[C_d = \tau_D \frac{dI_{fwd}}{dV_D} \]

\[\tau_D = \frac{1}{2\pi F} \quad (\text{transition time}) \]

\(C_j \) – barrier capacitance

\[C_j = \frac{C_{JO}}{\left(1 - \frac{V_D}{V_J}\right)^M} \quad (\text{available for negative or small values of } V_D) \]
Diode circuit model

SPICE model of Barrier Capacitance

\[
C_j = \begin{cases}
C_{JO} \cdot \left(1 - \frac{V_D}{V_J}\right)^{-M}, & V_D < FC \cdot V_J \\
\frac{C_{JO}}{(1 - FC)^{M+1}} \cdot \left(\frac{M \cdot V_D}{V_J} + 1 - FC(1 + M)\right), & V_D \geq FC \cdot V_J
\end{cases}
\]
Diode circuit model

Small signal model

\[g_D = \left. \frac{dI_D}{dV_D} \right|_{PSF} \]

\[C_d = \tau_D \cdot \left. \frac{dI_D}{dV_D} \right|_{PSF} = \tau_D \cdot g_D \]

Noise modeling

\[\overline{i_{ZS}^2} = \frac{4kT}{(R_S / Aria)} \cdot \Delta f \]

\[\overline{i_{ZD}^2} = 2qI_D \Delta f + KF \cdot \frac{I_D^{AF}}{f} \Delta f \]
Diode circuit model

Temperature variation

\[
R_s(T) = R_s \cdot \left[1 + \text{TRS}1 \cdot (T - T_{\text{nom}}) + \text{TRS}2 \cdot (T - T_{\text{nom}})^2 \right]
\]

\[
I_s(T) = I_s \cdot \exp \left[\left(\frac{T}{T_{\text{nom}}} - 1 \right) \frac{E_G}{N \cdot U_T} \right] \left(\frac{T}{T_{\text{nom}}} \right)^{X_{TI}}
\]

\[
BV(T) = BV \cdot \left[1 + \text{TBV}1 \cdot (T - T_{\text{nom}}) + \text{TBV}2 \cdot (T - T_{\text{nom}})^2 \right]
\]

\[
C_{JO}(T) = C_{JO} \cdot \left\{1 + M \cdot \left[4 \cdot 10^{-4} \cdot (T - T_{\text{nom}}) + \left(1 - \frac{V_j(T)}{V_j}\right)\right]\right\}
\]
SPICE model of Bipolar transistor

Bipolar transistor circuit model

DC current expressions

\[I_b = A \cdot \left(I_{be1} / BF + I_{be2} + I_{bc1} / BR + I_{bc2} \right) \]

\[I_c = A \cdot \left(I_{be1} / K_{qb} - I_{bc1} / K_{qb} - I_{bc1} / BR - I_{bc2} \right) \]

\[I_{be1} = I_s \cdot \left[\exp \left(\frac{V_{be}}{NF \cdot U_T} \right) - 1 \right] \]

\[I_{be2} = I_{se} \cdot \left[\exp \left(\frac{V_{be}}{NE \cdot U_T} \right) - 1 \right] \]

\[I_{bc1} = I_s \cdot \left[\exp \left(\frac{V_{bc}}{NR \cdot U_T} \right) - 1 \right] \]

\[I_{bc2} = I_{sc} \cdot \left[\exp \left(\frac{V_{bc}}{NC \cdot U_T} \right) - 1 \right] \]
SPICE model of Bipolar transistor

Capacitances modeling

Base-emitter capacitance

\[C_{be} = C_{dbe} + A \cdot C_{jbe} \]

- Base-emitter diffusion capacitance

\[C_{dbe} = t_f \cdot \frac{dI_{be}}{dV_{be}} \]

- Base-emitter barrier capacitance

\[C_{jbe} = \begin{cases}
C_{JE} \cdot \left(\frac{V_{be}}{V_{JE}} \right)^{-MJE} , & V_{be} < FC \cdot V_{JE} \\
\frac{C_{JE}}{(1 - FC)^{MJE+1}} \cdot \left(\frac{MJE \cdot V_{be}}{V_{JE}} + 1 - FC(1 + MJE) \right) , & V_{be} \geq FC \cdot V_{JE}
\end{cases} \]

Collector-emitter capacitance - \(C_{bc} \) has similar expressions as \(C_{be} \)