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Abstract

Tremor is a disabling condition for a large segment of population, mainly elderly. To the present

date, there are no adequate tools to diagnose and help rehabilitation of subjects with tremor, but

recently there is a tremendous surge of interest in the research in the ®eld. We report on the use of

fuzzy methods in applications for rehabilitation, namely in tremor diagnosing and control. We

synthesize our results regarding the characterization of the tremor by means of nonlinear dynamics

techniques and fuzzy logic, and the prediction of tremor movements in view of rehabilitation

purposes. Based on linear and nonlinear analysis of tremor, and using fuzzy aggregation, the fusing

of tremor parameters in global functional disabling factors is proposed. Nonlinear dynamic

parameters, namely correlation dimension and Lyapunov exponent is used in order to improve the

assessment of tremor. The bene®ts of the fuzzy fused tremor parameters rely on more complete and

accurate assessment of the functional impairment and on improved feedback for rehabilitation,

based on the fused parameters of the tremor. Further steps in rehabilitation may require external

muscular control. In turn, the control of tremor by electrical stimulation requires movement

prediction. Several neural and neuro-fuzzy predictors are compared and a neuro-fuzzy predictor is

presented, allowing us ®ve-step ahead prediction, with an RMS error of the order of 10%. The

bene®ts of the neuro-fuzzy predictor are good prediction capability, versatility, and apparently a

high robustness to individual variations of the tremor. The reported research, which extended over

several years and included development of sensors, equipment, and software, has been aimed to

development of products. The results may also open new ways in tremor rehabilitation.
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1. Introduction

1.1. Background

Tremor may be a disabling condition and affects a large number of people, mainly the

elderly. The urgency of developing accurate diagnostic tools and means for treating tremor

is related to the increase of the population affected by tremor. The US population above 65-

year-old in 2005 is expected to be 24% Ð about ®ve times the percentage 100 years ago

[1]. The situation in US is still less developed than in several European countries, which, in

turn, lag behind Japan. A comparison of the population segments in a representative

selection of countries around the world is shown in Fig. 1, based on data found in [2]. The

`̀ older old'' segment of the population, i.e. the segment aged above 80 years, becomes a

signi®cant part of the overall population in countries with life expectancy higher than 75

years (see Fig. 2, based on data in [2]). Rough estimations put the percentage of people in

the older old segment affected by tremor between 25 and 40%. The need for extensive

supply of advanced rehabilitation technology in general [3], and in the ®eld of tremor

speci®cally is acute and may become dramatic for industrialized nations, where the age

expectation is believed to increase to 90 years in the next four decades. The elderly

population's speci®c rehabilitation needs, including tremor related rehabilitation, have to

be satis®ed. Tremor treatment includes education of people with tremor to cope with their

condition, medication, and prosthetic means to reduce tremor and to maintain and restore

the functional abilities. In this paper, the tremor diagnosis and rehabilitation issues are

being addressed.

1.2. Current state in tremor-related research

Tremor can affect the limbs, head, voice, and the whole body, as in posturographic

tremor. It is widely recognized that, despite signi®cant progresses in neurology, postur-

ography, electromyography, and investigation techniques, `̀ tremor is commonly encoun-

tered in medical practice, but can be dif®cult to diagnose and manage'' [6]. Psychiatrists

Fig. 1. Age segments in various countries.
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are able to identify the types of tremor by visual inspection of the rest, postural and

intention tremor, fatigue tests, and by other clinical signs, and recent research signi®cantly

advanced the ®eld [7,8,10,14±21,25,26,28,31,34,42,43,45,48,61]. Differential diagnosis in

tremor is still performed by clinical signs only, yet recently there is an increase in interest in

tremor analysis using appropriate equipment. The essential tremor and the Parkinson

tremor are the most common types of tremor. Rather frequent cases of misdiagnosis

between different types of tremor are reported, for instance between intention tremor and

cerebellar tremors [15], asking for improved tools to help diagnosis. Recently, several

researchers have analyzed tremor as related to various diseases and proposed new analysis

procedures [6±9,17,19,33,35,37,40,56]. Lauk et al. [33] have developed software for

recording and analysis of human tremor. Lin and Zev Rymer [35] reported the analysis of

pendular motion of the lower leg in spastic human subjects. Louis et al. [37,38] report on a

portable instrument for assessing tremor severity in epidemiologic ®eld studies. However,

the techniques to measure and analyze tremor remain rather undeveloped and not widely

accepted.

Beyond measuring tremor, the assessment of the functional disability it produces is

needed for a correct evaluation of the subject rehabilitation needs and for choosing the

appropriate rehabilitation methods. Several authors introduced methods to perform such an

evaluation of the disability and of methods to assess it, e.g. [11,17,19,37,38,40]. In

previously reported research [50,56], we have proposed the dynamic nonlinear analysis

(chaos analysis) and new parameters to describe the tremor movements.

When the causes of tremor cannot be eliminated, natural or arti®cial tremor control is

needed. Lundervold et al. [39] report on the reduction of tremor and related disability

using behavioral relaxation training. Unfortunately, natural tremor control is poor because

tremor is essentially an unconscious movement, moreover, as pointed out in [32], the

natural thresholds for detection of limb movements is higher at frequencies corresponding

to tremor, thus natural tremor detection is not taking place for low amplitude movements.

The failure of noticing hand tremor asks for external feedback to be supplied for control

Fig. 2. Life expectancy at birth, in various countries.
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enhancement. Several researchers addressed the problem of providing arti®cial means to

help subject apprehending the tremor for better control. Liu et al. [36], discussed the

effects of visual feedback on manual tracking and action tremor in Parkinson's disease,

while Lundervold et al. [39] discuss behavioral relaxation to reduce tremor. In [49,50], we

addressed the problem of creating a visual and sound feedback related to tremor and the

subject will be further developed in this paper. Because patient tremor control is not

always effective, technical means to suppress the tremor are needed. One approach is to

apply control to the central nervous system to control the tremor. This approach,

addressing Parkinson treatment, has been analyzed by several researchers (e.g. [5])

and developed by MedtronicTM (see [4]). Another approach is to control the limb

movements by applying electrical stimulations to the related muscles controlling the

limb. This approach was independently introduced in [24,50] and is similar to the

approach in [41].

Previously, we have proposed a new type of sensor to detect tremor and other movements

[51,52]; also, we introduced several parameters to describe the tremor movements in limbs

and related methods to analyze the tremor, and software tools to perform the analysis [50].

In addition, we analyzed chaos features in head tremor, mandibular tremor, and `̀ tremored

voice'' and we presented applications related to rehabilitation and tremor control.

2. Measurement methods

2.1. Generalities

Tremor signal can be acquired using various techniques. Previously reported techniques

used in tremor measurement are based on capacitive sensors, inductive sensors, 1-D or

triaxial [18,19] accelerometric sensors and velocity sensors [40,44], resistive sensors [29],

mechanical sensors [23], pressure-sensitive digitizing tablets [19] and optical sensors [23].

Image-based tremor measurement methods are also a strong candidate in the near future.

Force and surface electromyogram (EMG) signals are frequently recorded and analyzed

(e.g. [48]). The sensors used to measure the tremor should be carefully selected. For an

elementary measurement, the sensor performance is not critical, as far as the sensor is low

weight, or has non-contact measurement capabilities, to avoid loading the hand. However,

when a nonlinear analysis is performed, low noise, high sensitivity, and high linearity

sensors are required.

For the nonlinear analysis, the sampling frequency has to be much higher than the

bandwidth of the noise, and the acquisition should be of high precision (at least 12 bits);

else, the sampling and quantization noise generate unreliable results. The noise can destroy

the very noise-sensitive nonlinear information in the signal and lead to incorrect results.

A specially designed sensor and measuring system have been used; these are based on a

resonant sensor and on the commercial Tremor analyzerTM system, developed by T&TTM

Ltd., according to our design [50,51,55,56]. The system measures the movement of the

whole hand and can be adapted to measure the leg, jaw, and head tremor. Moreover,

accelerometric sensors were used to measure individual ®nger tremor and the analysis can

be complemented by electromyography, with additional equipment.

4 H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24
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2.2. The sensor

A new type of sensor [51] which has the advantage of being unobtrusive and allowing us

the measurement without contact to the subject hand has been used. The sensing element is

a distributed RLC circuit that is tuned to, or close to, the predetermined frequency of a

driving oscillator. The resonant sensor relies on an oscillator that couples through a

relatively high-impedance to the sensing element a signal having a predetermined

frequency. The high-impedance and the resonant sensor form a voltage divider circuit

that generates at their junction a signal that is directly representative of a position and/or

movement of an object in proximity to resonant sensor. The proximity of sensed object to

resonant sensor causes a change in the parallel resonant frequency of resonant sensor,

which causes corresponding changes in its impedance and, therefore, the magnitude of the

signal across the resonant sensor.

In contrast to conventional inductor/capacitor (LC) circuits that intentionally minimize

undesirable parasitic capacitances and couplings to surrounding objects, this type of sensor

enhances the distributed capacitances and couplings and employs them as sensitive object-

sensing elements. Suitable distributed capacitance and inductance for the resonant sensor

are achieved by forming planar winding in a strip-like shape in which conductor width

optimizes the electric and magnetic ®eld distributions of the sensor. Planar winding has a

relatively large conductor width and a relatively small spacing between successive turns to

achieve a suitably high capacitance between the turns and a suitably large overall

capacitance for resonant sensor. The ratio of spacing to conductor width should be kept

low (1:1 or less) to maximize the distributed capacitance of resonant sensor. The winding is

shaped to provide a relatively uniform electric ®eld in an object-sensing zone that is

generally determined by the overall dimensions and shape of resonant sensor. The

dielectric substrate is planar and has a low relative dielectric constant, ranging from

about 1.0 to about 5.0, to insure a high sensitivity of resonant sensor to proximal dielectric

objects.

The resonant sensor behaves as a low-loss, high Q, distributed parallel RLC circuit

having signi®cant distributed capacitances, inductances, but low dissipation factors that

contribute to enhanced electrical and magnetic coupling to the adjacent sensing zone. The

sensor has a Q ranging from about 30 to about 100 under free conditions (no object in

proximity). All of the distributed elements, R, L, C, are dependent on the proximity of

surrounding objects and contribute to sensing the objects. Distributed capacitances and

inductances (and possibly an external ®xed capacitance) determine the resonant frequency

of resonant sensor. Distributed losses in the equivalent capacitance and inductance, which

are affected by dissipation in proximal objects, determine the Q and, therefore, the

sensitivity of resonant sensor. Such an electrical ®eld is suitable for sensing dielectric

(nonconductive and nonmagnetic) objects, such as the hand.

Because of the proximity of object, the loaded impedance versus frequency function

curve shifts and the resonant frequency of resonant sensor shifts away from the operating

frequency, moreover the quality factor Q changes due to increased loses, thus producing a

change of the sensor overall impedance. The shifting of the curve can be in either a higher-

or lower-frequency direction depending on the sensor con®guration. When a dielectric

object is in proximity to resonant sensor, its equivalent capacitance increases, lowering its

H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24 5
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resonant frequency relative to operating frequency. Consequently, the voltage divider

output voltage level decreases. When a conductive object is proximal to resonant sensor, its

equivalent capacitance and equivalent resistance increase, thereby lowering its Q and its

resonant frequency relative to operating frequency. Consequently, the voltage divider

voltage level decreases. As the human body contributes both a capacitance and an electric

loss, both effects above described are present, and they contribute to the sensing process.

The impedance change is measured to determine the distance to the object.

To minimize loading of the signal across resonant sensor, a high input impedance buffer

ampli®er, having a low input capacitance, conveys the signal to a detector that extracts a

peak (or average) envelope voltage value from the signal. The voltage divider formed by

high-impedance and resonant sensor provides an output voltage to buffer ampli®er that is

directly proportional to the impedance of resonant sensor at an operating frequency. The

envelope voltage is conditioned by a band-pass ®lter and an ampli®er to produce an analog

output signal. The ®lter also removes power supply hum (50/60 Hz) and noise at

frequencies >150 Hz. A linearization circuit is typically added to linearize the output

voltage as a function of distance to object. A complete description of the sensor, including

schematics and operation, are provided in [51].

2.3. Signal processing

Signal processing is done in two steps. First, the signal is pre-processed to remove the

main perturbations. Then, the signal is processed in view of the analysis.

2.3.1. Pre-processing

The tremor is a complex movement, including components derived from respiration

movements and other movements unrelated to tremor. The respiration contributes to the

low frequency movements of the hand. These components should be removed, tacking into

account that respiration has a basic frequency of about 0.1±0.3 Hz for adult subjects, with a

bandwidth in the range 0.05±3 Hz. A high-pass ®ltering, at about 2 Hz, is recommended.

Separate acquisition of the respiration signal may help removing this component by tuning

an LP ®lter to the respiration signal or by using an adaptive signal canceling method.

Similar means may be used to partly remove the movements induced by the blood ¯ow. On

the other hand, there is a random component in the movement, which bandwidth is dif®cult

to determine in the present stage because of the chaotic component must also be

considered. We estimate this bandwidth at frequencies higher than 10±40 Hz [56].

In our experiments, which are performed based on equipment built according to this

description, the signal is low-pass pre-®ltered and high-pass ®ltered at 40 and 0.1 Hz,

respectively, with analogue ®lters. Then, the signal is sampled with a sampling frequency

of 100 Hz and quantized to 12 bits, using a National InstrumentsTM acquisition board,

which, together with the equipment for tremor sensing and a personal computer constitutes

the hardware set-up in this application.

2.3.2. Signal characterization: linear analysis

Power spectra are computed using a 512 point fast Fourier transform, performed on each

time window. Based on the Fourier spectrum in the 0±25 Hz range and on the amplitude±

6 H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24
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time representation, several parameters are used to characterize the tremor signal. Derived

parameters include the `̀ main frequency'', the periodicity index, the frequency spreading,

the minimal and the maximal period, the peak and average amplitude, and the high-

frequency content to low frequency content ratio, brie¯y named `̀ high-to-low ratio''. Some

of these parameters are commonly used in tremor analysis, like amplitude and main

frequency, some were adopted from other applications, like the `̀ low-to-high'' or LH

index, and a few of the parameters were introduced speci®cally for this application.

We brie¯y explain the de®nition of these parameters. The `̀ main frequency'' is de®ned

as the frequency corresponding to the highest peak in the Fourier spectrum. The ratio

between the low frequency region and high frequency region energy in the spectrum is

computed based on a boundary between the two frequency regions, set at 6 Hz. This

frequency is generally assumed to lie about the middle between the `̀ low-frequency

tremor'' and the `̀ high-frequency tremor'' [6,15].

The `̀ periodicity index'' is an ad hoc parameter, de®ned as the ratio between the power

contents of the main peak in the spectrum and the total power in the signal. This index

provides rough information on how much does the signal quasi-periodic component in

tremor play a role. A low periodicity factor shows either that the signal includes more than

one quasi-periodic component, thus having several causes, or that it is `̀ noisy''. The

frequency spreading is computed as the spread of the components in the frequency

spectrum. All these parameters are computed at the running time and displayed by

the software that complements the equipment for diagnosis. A typical screen is shown

in Fig. 3.

2.3.3. Signal characterization: nonlinear analysis

Previous research [56] indicates that tremor may include a signi®cant nonlinear, chaotic

component, which may play a part in diagnosis and rehabilitation. Here, the nonlinear

analysis is performed to determine the correlation dimension and the Lyapunov (maximal)

exponent, and a visual examination of the phase diagram is available at running time in the

software (Fig. 3). A positive Lyapunov exponent is known to be the primary indicator of a

chaotic dynamics. It relieves the degree of divergence of the `̀ trajectories'', that is, the

initial condition sensitivity and unpredictability of the signal. The low values of the

Lyapunov exponent show a `̀ weakly-chaotic'' regime (weakly divergent trajectories). The

maximal Lyapunov exponent (and the correlation dimension, reported subsequently) is

computed for time series of 2400 samples from the recordings. The values of the Lyapunov

exponent range from almost 0 (0.05) to 0.7. The results do not show signi®cant differences

in the Lyapunov exponents for young and healthy subjects, when contrasted to the group of

about 45-year-old people we have tested.

Another parameter frequently used to characterize chaotic behaviors is the correla-

tion dimension. We determined that the correlation dimension D of the tremor signal is

in the range [0.5; 5]. Most recordings exhibit a D value in the range [2.5; 3]. The range

of D is somewhat higher for the signal acquired under conditions without muscular

effort than under muscular effort. High differences in the correlation dimension of

the signal have been found for several young subjects, possibly showing that this

parameter Ð and the tremor complexity Ð is not speci®c to a subject, but rather to his

or her state.

H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24 7
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2.4. Data acquisition conditions

Subjects were asked to keep ®xed the arm making an angle of about 208 with the

horizontal (under the horizontal); this position is considered somewhat more natural and

less tiring than the horizontal position, usually assumed in other tests. The subject is seating

during measurements. For the duration of the experiments (1±3 min), subjects had to

maintain the same position of the hand. Fatigue is expected to in¯uence the last part of the

determinations. Therefore, the analysis for `̀ normal condition'' is performed only for the

®rst minute, while the analysis for `̀ fatigue condition'' is performed on the last minute. In

another set of experiments, the subjects were required to hold in their hand an object

(weigheing about 1 kg), such that muscular effort and fatigue is forced upon, for analyzing

the fatigue effect on tremor [16,56]. Normal subjects with ages ranging from 20 to 45 years

were tested, as well as alcoholic subjects (for details on the method, see [51,56]).

3. Tremor characterization for fuzzy knowledge bases in diagnosis and
rehabilitation

Automatic diagnosis and the use in rehabilitation systems are two major applications of

tremor analysis. The realization of feedback in tremor-related rehabilitation is a major

objective of the tremor analysis. The feedback has to be simple enough for easy under-

standing and learning. It should make use of easy to grasp visual and audible information.

In this purpose, the information has to be appropriately compressed.

Several groups have recently investigated graphical interfaces in systems aimed to

rehabilitation. Toth-Cohen et al. [57] analyzed various computer-assisted instruction

programs in hand therapy. Although their study focuses on the therapists, not the patients,

it reveals some useful hints to improve the interaction with the patient as well.

For rehabilitation purposes, the use of a fuzzy knowledge base has been proposed

[49,50,56]. The knowledge base includes rules referring to both the classic and chaotic

features of the signals, because the classic parameters alone may not consistently represent

the whole tremor process. Fuzzy logic received a signi®cant attention in medical sciences

and a large number of medical applications were solved using fuzzy systems, from control

to diagnosis to medical image processing [55±57].

The main parameters and the corresponding linguistic degrees used in the rule base are

presented in Table 1. The number of linguistic degrees is primarily dictated by medical

knowledge, i.e. by the meaning that can be assigned to the different linguistic degrees and

to the corresponding tremor classes, as identi®ed by the resulted set of parameters. For

example, at present, it appears to be meaningless to use more than two degrees for the

Lyapunov exponent, as no medical meaning can be derived, except that an almost non-

chaotic tremor is less complex than a movement with high Lyapunov exponent value. The

degrees of understanding of the meaning of these parameters by the physicians and of

grasping the meaning by the average subject are varying (see Table 1). The best understood

and comprehended are the amplitude and the (main) frequency. Physicians mostly insist on

the frequency parameter, as it is known to vary with and to provide strong indications on the

type of tremor, thus helping diagnosis.

H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24 9
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With the purpose of creating an easy to grasp feedback that helps patients to become

aware of the characteristics of the tremor of their limbs, moreover to help them controlling

the tremor, we have proposed [51,56] a representation of the tremor by images and sounds.

This representation is synthetic and is based on the linguistic and fuzzy valuation of the

main parameters of the tremor. The use of linguistic and fuzzy valuations is justi®ed by its

simplicity (easy to understand by the physician and the patient), moreover by good

information compression.

In one of the available versions of the system, the feedback is realized by showing on the

computer screen a simpli®ed version of the screen in the full-research program, as in Fig. 3.

In other versions, for feedback purpose, the display shows a ball moving over a plane at the

speed of the hand tremor, as well as one or two analog meters. An analog meter (see Fig. 4)

shows either an average of the squared tremor amplitude, or an evaluation of the tremor

amplitude performed according to a set of rules explained subsequently. In case of the

screen showing two analog meters, the left-side analog meter shows the value of the fused

amplitude, while the right-side bar meter can be used to display actual vertical movement,

or the evolution of the fused irregularity index, or the evolution of another parameter.

The fusing of the numerical parameters derived from the analysis is performed based on

fuzzy aggregation. The evaluation of the amplitude is dependent on the `̀ aggravating

factors'', for instance frequency of tremor, and tremor irregularity measures.

Fig. 4. Example of display available for the feedback.

H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24 11
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To reduce the number of represented parameters, yet preserving the essential informa-

tion, we performed the fusing into two parameters of the numerical parameters derived

from the analysis. The primary parameter `̀ amplitude'' is not eliminated, because its

meaning is easy to grasp; however, it is modi®ed to include information related to other

parameters, regarded as `̀ aggravating factors''. Indeed, the medical understanding is that a

certain amplitude value may be more or less incapacitating, depending on other features of

the tremor. Therefore, such features are viewed as aggravating factors and are fused in an

`̀ equivalent amplitude'' factor, used in the feedback under the name `̀ amplitude''. Namely,

the evaluation of the amplitude is modi®ed by the frequency of the tremor, and by several

parameters related to tremor irregularity. The contribution of theses factors is determined,

at this level, purely empirically, based on medical experts' opinions. Examples of the

membership functions used for two parameters are shown in Figs. 5 and 6. Similarly, a

global parameter related to tremor `̀ irregularity'' is de®ned.

The rules in the rule base used to globally characterize the tremor are in the generic form:

If amplitude A is in the range (A1±A3)

and main frequency F is in the range (F1±F4)

and HL index is in the range (HL1±HL3)

and periodicity index PI is in the range (P1±P3)

and correlation dimension D is in the range (D1±D3)

and Lyapunov exponent L is (low, high)

then amplitude±frequency (fused) parameter AF is (AF1±AF5)

moreover irregularity (fused) parameter IRREG is (IRR1±IRR3).

The parameters AF and IRREG are fuzzy (fused) features of the movements. As an

example, the ®rst rule in the system is

Fig. 5. Membership functions for tremor amplitude A1 � low; A2 � average; A3 � impairing.

Fig. 6. Membership functions for the `̀ main frequency'' of the tremor.

12 H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24
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If A is A1 � low and F is F1 � very low and HL is HL1 � low and PI is P1 and D is D1

and L is low

then AF is AF1 (very low).

However, the computation of the output membership functions is performed based on an

empirical correction to the MIN aggregation of the premises, using coef®cients to trim the

result. For instance, the membership function of AF is

mAF�a; f ; u; v; d� � min�l1mA�a�; l2mF�f �; l3mHL�u�; l4mPI�v�; l5mD�d��
Here, l1, l2, l3, l4, l52 [0,1] are coef®cients appropriately chosen (empirical choice). The

need for the l coef®cients is dictated by the fact that at present stage it appears that medical

experts may partly agree on the membership functions of the premises and on the rules, but

the result obtained by min operations should be adjusted to receive the agreement of the

experts. Therefore, a corrected version of aggregation was found appropriate. The l
coef®cients are chosen strictly empirically.

The rules establish the relationships between premises and consequences (the appro-

priate linguistic degrees, derived by empirical methods.) The resulted parameters AF and

IRREG are synthetic fuzzy features of the movements. The results of the inference

described above are defuzzi®ed and used in the feedback to build the image of the analog

indicator on the display.

There are various feedback facilities under current evaluation with the system. In one of

them, the feedback is realized by showing on the computer screen a simpli®ed version of

the screen used in the full-research program. In another version, a screen showing a ball

thatsynchronouslyfollowsthevertical tremorof thehand.Optionally, theballhas thediameter

and color representing two other parameters. Moreover, an analog indicator is used for the

feedback purpose. Theanalog indicator shows either an average of the tremoramplitude,or an

evaluation of the tremor amplitude performed according to the rule base. A sound is also

generated every time the tremor fused amplitude is higher than a speci®ed threshold.

Yet, another representation currently being considered makes use of a four-dimensional

space, namely: color of the background, color of the spot, dimension of the spot, and

position of the spot on the background screen. This representation uses four fused

parameters, not described in detail here. The color of the spot represents a third fused

parameter, named `̀ fused frequency'' (FDF), that includes information on the main

frequency and on the irregularity of the movement. The color of the screen shows the

IRREG parameter; for example yellow for very irregular, light gray for average and dark

gray for very regular. The dimension of the spot represents a forth variable, showing

progress in control and is activated only for subjects having a `̀ history'' in the database. A

squeezing spot shows improvement of control; an in¯ating spot shows decrease of

performance; the position of the spot on the screen shows the relative amplitude and

frequency of the tremor signal. The patient, in cooperation with the therapist, can modify

some of the features, such as the sensitivity and the limit frequency in the LH index, or the

dimension of the spot for a given value of the amplitude.

We also have analyzed other representations for the feedback, including a representation

based on temporal (dynamical) fuzzy sets analysis. The principles of temporal fuzzy sets

and of the related representation are given in [30,47]. Using a fuzzy information space

H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24 13
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representation has been found useful for diagnosis purposes. Namely, we have presented a

way to characterize the attractors corresponding to the hand tremor using the method of

classi®cation based on temporal fuzzy sets. However, the method is yet of rather limited

use in feedback, because of the high complexity of the generated ®gures. Further research

will be conducted to improve the use of this method in graphical interfaces, possibly by

simplifying the representation.

4. Tremor prediction

In order to increase the rehabilitation capabilities of the subject based on feedback, it is

preferable to provide a feedback that includes information on the just-to-come movement,

not on the present-moment movement. This requires a prediction of the movement.

Moreover, when the rehabilitation based on subject's control is not effective, a different

control strategy must be adopted, for example using an external control loop and electrical

stimulation of the muscles. This approach is presented in the present section. We have

developed several predictors, including multi-layer perceptron neural predictors [9,55],

feature-oriented neural predictors [55] and neuro-fuzzy predictors [12]. Here, we present

the neuro-fuzzy predictor and brie¯y compare the results with other predictors.

4.1. A neuron with fuzzy synapses

The use of fuzzy and neuro-fuzzy prediction of time series has recently became popular

[27,53,54,59]. In this section, we investigate the use of a speci®c type of neuron, named

neuron with fuzzy synapses (NFS), to the prediction of tremor movements. For a NFS

having m inputs, x1±xm, the output y is computed as a sum of nonlinear functions:

y �
Xm

i�1

fi�xi�; fi : Ui ! R; Ui � R (1)

A function fi can be viewed as a synaptic transformation of its input xi. Since every function

fi is implemented using a particular class of neuro-fuzzy systems, we shall use the term

fuzzy synapse (FS) to designate these particular synapses. The fuzzy synapse number i,

implementing the NFS function fi from Eq. (1), uses a number of N reference fuzzy sets,

denoted with Air, r � 1; 2; . . . ;N. Every fuzzy set Air is characterized by its membership

function (MF) mAir
: Ui ! �0; 1�.

The membership functions mAir
have a triangular form, like in Fig. 7, where four MFs are

depicted. For a certain value ui of the input xi, the truth degree (TD) tir of the proposition (xi

is Air), is equal with the value of MF mAir
computed for ui; tir � mAir

�ui�. For every crisp

input value, a number of N truth degrees tir; r � 1; 2; . . . ;N, are computed. But, as one can

see from Fig. 1, only two consecutive TDs are nonzero. Moreover, the sum of these TDs is

1, ti;k � ti;k�1 � 1, where k is the index of the ®rst nonzero TD.

The fuzzy synapse has N rules, r � 1; 2; . . . ;N, of the form:

If xi is Air then yir � wi1rtir � wi2rt
2
ir � � � � � wiPrt

P
ir (2)

where yir is the output of the rule r, wijr , j � 1; 2; . . . ;P, are adaptive weights of the rule r, tir
is the truth degree of the rule premise (xi is Air), tir � mAir

�xi�.

14 H.-N.L. Teodorescu et al. / Artificial Intelligence in Medicine 571 (2000) 1±24
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The function used for the rule output computation is a polynomial of degree P, having the

variable tir and the coef®cients wijr. For P � 1, Eq. (2) de®nes the fuzzy rule of

Yamakawa's neuron synapse [60]. Despite its computational simplicity, Yamakawa's

neuron provides good prediction performances for the tested series. For polynomials of

degree P > 1, there is an increase in the computational complexity of the rule compared to

the case P � 1, but the improved prediction performances justify the increase in computa-

tional complexity [12].

We present the prediction performances of predictor schemes based on neurons with

fuzzy synapses of order P � 3 in tremor prediction applications. The rules of these

particular synapses are, for the third-order fuzzy synapse:

Rule no: r : If xi is Air then yir � wi1;rtir � wi2;rt
2
ir � wi3;rt

3
ir

The output of the fuzzy synapse, yi � fi�xi�, is computed as the linear combination of the

rule outputs yir

yi � fi�xi� �
PN

r�1yirPN
r�1tir

�
PN

r�1yirPN
r�1mAir

�xi�
(3)

where yir is computed with Eq. (2), and N the number of the synapse rules. The fuzzy

synapse is a fuzzy system with a crisp input xi and a crisp output yi, belonging to the

category of Sugeno fuzzy systems. The parameters of the fuzzy synapse are the weights wijr

from Eq. (2). By adapting these weights, we can approximate a desired shape of the

synapse function fi.

For every value belonging to the input domain Ui, only two adjacent rules have nonzero

truth degree, and the sum of the truth degrees is equal to one. By denoting with

tik � mAik�xi� and ti;k�1 � mAi;k�1�xi�, these nonzero truth degrees, we can rewrite

Eq. (3) as yi � yik � yi;k�1. Thus, for triangular MFs, the computation is drastically

reduced. Since the computation complexity does not depend on the number of fuzzy

rules N, one can use as many fuzzy reference sets as needed, for a satisfactory fuzzy

partitioning of the input domain Ui.

We denote a1 � xmin; a2; . . . ; ar; . . . ; aN � xmax; a1 < a2 < � � � < ar < aN , the points

in the input domain Ui where the triangular MFs are unitary, mAir
�ar� � 1, r � 1; 2; . . . ;N.

For Yamakawa's neuron, one can show that between any two successive points ar, the

synapse output yi, computed with Eq. (3), has a linear variation with xi, that is

Fig. 7. Triangular membership functions of the fuzzy reference sets. For every input value, ui, only two truth

degrees are nonzero.
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yi � c0r � c1rxi, for xi 2 �ar; ar�1�; r � 1; 2; . . . ;N ÿ 1. For a third-order synapse, the

synapse output yi has a third-order polynomial variation with the input xi, on the intervals

[ar, ar�1]. The nonlinear behavior of the higher (second and third)-order synapses allows us

better prediction performances with respect to Yamakawa's neuron performances [12],

with the expense of increased computational complexity.

The neuron output is the sum of all fuzzy synapses outputs. Thus, one can write the

neuron output y, for a particular input vector (u1, u2, . . ., um), as

y �
Xm

i�1

fi�ui� �
Xm

i�1

XN

r�1

yir�ui� �
Xm

i�1

XN

r�1

XP

j�1

wijr�tir�ui��j (4)

Since the TDs tir are directly computed for a certain input value, Eq. (4) represents a linear

weighted sum of dimension m� N � P, having the weights wijr. Adapting these weights

can approximate the desired behavior of the neuron synapses.

4.2. The training algorithm of the neuron with fuzzy synapses

From Eq. (4), it results that the NFS is a linear neuron (an ADALINE neuron), having the

weights wijr and the `̀ inputs'' (tir)
j. For the weights computation of the linear neurons, it is

convenient to apply the least mean square (LMS) algorithm. The LMS algorithm computes

the neuron weights such that the energy of the instantaneous error between the desired

neuron output d(k) and the current neuron output y(k) is minimized. If we denote the

instantaneous error by e(k), e�k� � d�k� ÿ y�k�, the instantaneous energy error is

E�k� � e2�k�. The neuron weights are computed such that the partial derivatives of

E(k), with respect to the weights, are 0

@E�k�
@wi

� 0; i � 1; 2; . . . ;Ni (5)

where wi are the weights, and Ni the number of weights. Applying Eq. (5) for NFS, the

neuron weight wijr is computed as

wijr�k � 1� � wijr�k� � Z�k��d�k� ÿ y�k��ftir�ui�k��gj
(6)

where d(k) is the desired output of the neuron, y(k) is the neuron output computed with

Eq. (4), k is the iteration number, and Z(k) regulates the LMS algorithm convergence speed.

For every input ui(k), only two LMS equations are used per synapse, because the truth

degrees tir are nonzero only for two consecutive rules.

The LMS algorithm is convergent when Z�k�E < 1, where E is the mean energy of the

neuron inputs. A practical implementation of this condition is given by the equation

Z�k� � b
Ein�k� (7)

where 0 < b < 1, and Ein(k) is an estimate of the inputs energy. The neuron inputs are (tir),

and their energy estimate Ein(k) is computed recursively as

Ein�k� � �1ÿ a�Ein�k ÿ 1� � a
Xm

i�1

XN

r�1

XP

j�1

ftir�ui�k��g2j
(8)
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where 0 < a < 1. We have used the values a � b � 0:5.

4.3. Chaotic series prediction with NFS

The m past samples, x�nÿ p�; x�nÿ pÿ 1�; . . . ; x�nÿ pÿ m� 1�, of the tremor time

series x(n), are the neuron inputs, in the case of a p-steps prediction. The output y(n) of the

neuron is an estimate of the current time sample x(n)

x�n� � y�n� �
Xm

i�1

fi�x�n� 1ÿ pÿ i�� (9)

where x(n) is the time series, p the prediction step and fi; i � 1; 2; . . . ;m, are the neuron's

synaptic functions.

In Fig. 8, a schematics of a ®ve-step predictor, p � 5, is presented. Every delay cell,

denoted by D, delays its input with one time sample. Five delay cells are used to obtain the

®rst NFS input, x1�n� � x�nÿ 5�, and then single delay cells are inserted between the NFS

inputs to obtain the neuron inputs x2±xm. The past samples x�nÿ 5�; x�nÿ 6�; . . . ;
x�nÿ mÿ 4� are the inputs of the neuron. The neuron fuzzy synapses FS1, FS2, to

FSm are trained such that its output y(n) approximates the series x(n). D represents unitary

delay cells. This prediction scheme is common to other neural networks based prediction

methods for chaotic series, where NFS is replaced by other adaptive structures, able to play

the role of a universal approximator, like multi-layer perceptrons, `radial basis functions'

networks or some neuro-fuzzy systems [13,22,58,59].

The time series samples arrive to the neuron inputs at different moments of time, because

of the time delay cells D. Since the neuron inputs are the samples of the same time series,

Fig. 8. A ®ve-step predictor based on a neuron with fuzzy synapses.
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one can use the same universe of discourse U for all the fuzzy synapses, FS1 to FSm. Thus,

the universe of discourse U is the interval [xmin, xmax], where xmin is the minimum series

value, and xmax the maximum series value, computed over the time interval where

prediction is made. It is reasonable to use identical MFs for all the inputs, that is, for

all inputs xi, Air � Ar.

A sliding window of consecutive samples of the chaotic series is used for the neuron

training. To compute the weights wijr with the LMS algorithm Eqs. (6)±(8), we use M

known successive samples x(0), x(1), . . ., x�M ÿ p�, where M @ m, M is the sliding

window length, and m is the number of neuron inputs. After the weight computation,

the trained neuron approximates the sample x(M) as

x�M� � y�M� �
Xm

i�1

fi�x�M � 1ÿ pÿ i�� (10)

where p is the predictor step, and m the number of neuron inputs. For the prediction of the

next sample x�M � 1�, one computes the coef®cients wijr using the samples

x�1�; x�2�; . . . ; x�M � 1ÿ p�, and so on. The value of M is dictated by the nature of

the chaotic series. Best results are obtained when M is bigger than the period of the lowest

periodic component of the series.

4.4. Predictor performance estimation

To estimate the prediction performance, we use the statistics of the prediction error, and

the normalized root mean square (RMSN) of the prediction error, de®ned as

RMSN �
���������������������������������������PNs

n�1�d�n� ÿ y�n��2
q

����������������������PNs

n�1d�n�2
q (11)

where d(n) is the sequence to be predicted, y(n) the predictor output, and Ns the number of

predicted samples. The histogram of the prediction error is an intuitive indication of the

quality of the prediction process. For a good prediction, the error should be close to white

noise (Gauss probability distribution.) The normalized dispersion (DN) of the prediction

error, that is the dispersion of the prediction error divided to the value range of the time

series, is used together with the RMSN to illustrate numerically the prediction perfor-

mances.

4.5. Prediction results

For the control purpose, as well as for training in rehabilitation, the prediction should be

at least three steps in advance, to allow for the control is applied and to compensate at least

partly for the inertia of the arm/hand. A ®ve-step-ahead prediction is a reasonable trade-off

between prediction error and feedback application lag. With a low sampling frequency to

account for the slower movements represented by the main frequencies in the tremor

spectrum (under 15 Hz), assuming a 50 Hz sampling in the control application, ®ve-step-

ahead prediction insures about 100 ms to apply control.
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For the results presented in this paper, all neurons have three inputs and are third-order

neurons with three MFs for each input. Results obtained for a ®ve-step prediction are

brie¯y presented here. In all prediction tests, the number of recorded samples is 992 and the

training window includes 32 samples. The results include estimation of the prediction

quality by the RMSN error, mean error, error dispersion, and the DN coef®cient (error

dispersion/series range). The results are contrasted with our previous results, obtained by

applying MLP neural networks and feature-oriented neural predictors, as described in

[9,55]. The fuzzy neuron is found to have advantages as simplicity and in many cases

generates signi®cantly lower prediction errors.

Fig. 9 illustrates an example of prediction. The trace of the actual tremor signal and the

predicted signal are almost superposing. The prediction error signal is also shown on the

same graph. The correlation function for the actual signal and for the signal predicted using

the neuro-fuzzy predictor are depicted in Fig. 9. For various predictions, the mean error

was between 0.0001 and 0.003, while the RMS error in the range 0.1±0.2. The histogram of

the error shown in Fig. 10 demonstrates that the condition of Gaussian distribution of the

error is satis®ed. The autocorrelation functions of the actual and predicted signals, shown

in Fig. 11, are almost identical, demonstrating that the essential information in the original

signal is correctly imbedded in the predicted signal.

Fig. 9. Original signal, predicted signal, and error signal for a normal subject (Series A).

Fig. 10. Histogram of the error, for the signal in Fig. 9 (Series A).
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Examples of numerical results corresponding to the ®gures in this section are shown in

Table 2. Interesting enough, there is no visible correlation between the determined

Lyapunov coef®cients, or correlation dimension in the series and the prediction mean

error or prediction error dispersion. This means that the fuzzy neuron predictor is very

robust with respect to changes in the complexity of the chaotic process. This preliminary

conclusion, however, should be supported by a larger data set evaluation. There was no

visible decrease in performance when the predictor was used for data collected from an

alcoholic subject, with comparison to normal subjects. (Alcoholic subjects show a different

frequency spectrum and a speci®c tremor.)

Compared to a MLP predictor of similar complexity, as reported in [9,55], this predictor

has better performances. Compared to the feature-space predictor presented in [55], the

performances are almost the same, but the complexity of the neuro-fuzzy predictor is much

lower, moreover the learning period signi®cantly shorter for the same error (32 samples,

compared to more than 100 samples).

Implementing the predictor in the feedback for rehabilitation will be attempted in the

near future. On the other hand, for muscular control, ®nding a robust, accurate and simple

predictor for the tremor signal solves only the initial part of the problem. Based on the

predictor, an ef®cient muscular control has to be determined, implemented, and tested on

subjects with various types of tremor.

Fig. 11. Auto-correlation function of the original and predicted signal, respectively, for the signal in Fig. 9

(Series A).

Table 2

Numerical results of the series

Results Series A Series B Series C Series D

Range (amplitude) ÿ0.32 to 0.21 ÿ0.14 to 0.21 ÿ0.38 to 0.32 ÿ0.32 to 0.39

RMS error 0.175808 0.111148 0.111052 0.1436

Error mean 0.00052 0.000196 ÿ0.00221 ÿ0.0024

Error dispersion 0.019382 0.009522 0.017088 0.019795

Error dispersion/series range 0.006 0.045156 0.045481 0.050821
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5. Discussion and conclusions

In this work, we have presented an extensive research, including applications of fuzzy

systems in the ®eld of tremor rehabilitation, primary aimed to products. The ®rst

application is based on linear and nonlinear (chaos) analysis and the use of fuzzy logic

in the assessment of tremor and related functional disabling, while the second application is

related to tremor prediction in view of rehabilitation, and control. We have described a

complete methodology for tremor analysis, including classic and chaotic parameters. A

combination of linear and nonlinear analysis, supplemented by a data fusing using fuzzy

methods is a good choice to create feedback in rehabilitation.

Although fuzzy logic is not the only way to solve the problems in hand, it clearly

demonstrates certain advantages. The use of fuzzy logic considerably simpli®ed the task

of fusing the tremor parameters into a few parameters that can be represented in

feedback. Moreover, the use of fuzzy logic bridges the gap between medical knowledge,

patient comprehension of the feedback information and engineering signal processing

methods.

One of our goals is the developing of predictive feedback and electric muscular control

for tremor cancellation, for the cases when tremor control by the subject cannot be

improved. The ®rst step in developing such control is to insure a good predictor. We have

compared several neural and neuro-fuzzy predictors, to insure a good trade-off between

prediction capabilities, speed and complexity. Several results using MLP and feature-based

neural predictors have been reported elsewhere [9,55], while in this paper we report on a

predictor based on a generalized Yamakawa's neuron. As for the trade-off between

precision and complexity, this predictor shows advantages over the two previously reported

tremor predictors.

The experience gained in this extensive research taught us that the bene®ts of using

fuzzy systems may be case-dependent and a mixture of design and implementation

simplicity and improved performance may, sometime, justify the use of fuzzy systems.

The improvement of the ef®cacy of computer-based tremor analysis, including nonlinear

analysis, and improvements in the feedback provided to patients for rehabilitation purposes

are seen as the major results in the present research.
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