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ABSTRACT

In what follows, we approach the problem of information organization from the
viewpoint of generalized structures (fuzzy structures and hyperstructures). The fuzzy
guantitative information can be modelled by fuzzy numbers, while the fuzzy
qualitative information has its counterpart in hyperstructures, in the sense that, for
example, two (fuzzy) informations yield a set of possible consequences. The
significance of information appears most clearly in structures; this induces the
necessity of studying the fuzzy algebraic structures (fuzzy groups, rings, ideals,
subfields and so on) as a means towards the better understanding and processing of
information. This report presents some recent results and methods in the rapidly
growing fields of fuzzy algebraic structures and hyperstructures and some
connections between them. Some results on fuzzy groups, fuzzy rings and fuzzy
subfields are given. Likewise, the consideration of diverse sets of fuzzy numbers and,
more notably, of the structures that these sets can be endowed with is of utmost
importance. In this direction, the operations with fuzzy numbers play a major role
and a number of questions regarding these operations are still open. A sample of the
different notions of fuzzy number and of the operations with fuzzy numbers and
their propertiesis given in this report. The similarity relations (fuzzy generalizations
of equivalence relations) are in direct connection with shape (pattern) recognition.
Diverse types of similarity classes and partitions are studied. Several notions of
f-hypergroup, which combine fuzzy structures and hyperstructures, are presented
and studied. Some results that put forward a two-way connection between L-fuzzy
structures and hyperstructures are given.

1. Introduction

In what follows, we dea with the problem of information organization from the
viewpoint of generalized structures (fuzzy structures and hyperstructures).

Generally speaking, one can accept the fact that “to solve a problem (not necessarily of a
mathematical nature)” means “to determine a set” (the set of the solutions), based upon the
problem data (that is, upon a set of informations). But, to determine a set means to give a
characteristic property, in other words, to obtain an information. In this context, a
classification of properties (informations) may be useful. One can distinguish between
gualitative properties (corresponding to the linguistic level of information) and quantitative
properties (corresponding to the numerical level of information). In most cases, the
information is not crisp, precise, but vague and imprecise, "fuzzy". The fuzzy quantitative
information can be modelled by fuzzy numbers, while the fuzzy qualitative information has
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its counterpart in hyperstructures, in the sense that, for example, two (fuzzy) informations
yield a set of possible consequences.

The significance of information appears most clearly in structures; this induces the
necessity of studying the fuzzy algebraic structures (fuzzy groups, rings, ideals, subfields
and so on) as a means towards the better understanding and processing of information. The
theory of algebraic hyperstructures has surprising connections with the fuzzy structures,
which can be interpreted as connections between the two types of information described
above. The similarity relations (fuzzy generalizations of equivalence relations) are in direct
connection with shape (pattern) recognition.

This report presents some recent results and methods in the rapidly growing fields of
fuzzy algebraic structures and hyperstructures and some connections between them. Some
results on fuzzy groups, fuzzy rings and fuzzy subfields are given. Likewise, the
consideration of diverse sets of fuzzy numbers and, more notably, of the structures that
these sets can be endowed with is of utmost importance. In this direction, the operations
with fuzzy numbers play a mgjor role and a number of questions regarding these operations
are still open. A sample of the different notions of fuzzy number and of the operations with
fuzzy numbers and their propertiesis given in this report. Diverse types of similarity classes
and partitions are studied. Severa notions of f-hypergroup, which combine fuzzy structures
and hyperstructures, are presented and studied. Some results that put forward a two-way
connection between L-fuzzy structures and hyperstructures are given.

2. Preliminaries

2.1 Fuzzy sets

The theory of fuzzy sets extends the area of applicability of mathematics, by building the
instruments and the framework for the management of the imprecision inherent to the
human language and thinking. The starting point is generalizing the notion of subset of a
set. It is well-known that a subset A" of the set A is perfectly determined by its
characterigtic functionca : A'? {0,1}, c ¢(x):i']“if XA

AT AR A 10, otherwise”

One generalizes the notion of “belonging to” the subset A’ by introducing a gradual
transition from “does not belong to” to “belongsto” (L. Zadeh, 1965). L. Zadeh succeded in
imposing the theory of fuzzy sets, by exhibiting applications of the theory. The idea of
regjecting the principle “tertium non datur” is directly connected to the generalization above.
It goes back to Aristotle and appears in the modal logic (Mac Coll, 1897) or multivalued
logics. The generalization of the concept of “characteristic function” was given by H. Weyl
(1940) and appears again in anew interpretation in papers by A. Kaplan & H. F. Schott and
K. Menger.

1.1 DEFINITION. Let U be a nonempty set. A pair (U, m, where m: U? [0,1] is a
mapping, is called afuzzy set. If xT U, nfx) is understood as the “ degree to which x belongs
to the fuzzy set determined by ni. We shall also call m: U ? [0,1] a fuzzy subset of U and
denote F (U) := [0,1]U ={m|m:U? [0,1]} the set of fuzzy subsets of U.

It is sometimes useful to replace the interval [0,1] (which is a lattice with respect to the
usual order relation) with alattice (L, U, U). Thus, a pair (U, m), wherem: U ? L, iscalled



an L-fuzzy set or L-fuzzy subset of U. Many definitions and results on fuzzy sets can be
transferred to L-fuzzy sets, provided some conditions on L are imposed.

1.2 DEFINITION. Let (U, m) beafuzzy setanda 1 [0,1]. The set
Ja = {xT U¥nx) 3 a}
(also denoted my) is called the a-level set of (U, m). Let suppm:={xT U |mx)* O}.

1.3 PROPOSITION. Lét (Ua)a 1 [o11 | P (U) be a family of subsets of U. Then (Ua)a1 [0 iS

the family of level sets of a fuzzy subset m: U ? [0,1] if and only if it satisfies the
conditions:

a) Up = U,I i

b)"a,bl [0,1],a£bimpliesUy| Us,.

) For any increasing sequence (a;)is o, @il [0,1], " i1 I, having limit a, we have
Ua =iz 0V, .

A fuzzy set is completely determined by the family of itslevel sets.:

1.4 PROPOSITION. Let X be a set and let ma fuzzy subset of X. Then
mx) =sup{kT [0,1] | xT X}.

1.5 DEFINITION. i) mel F (U) given by mgx) =0, " x1 U, is caled the empty fuzzy
subset of U.

i)Iif mtT F (U),theinclusion mi t isdefined by m{x) £t(x)," x1 U.

i) If m t1 F(U), define n? t (the union of the fuzzy subsets m and t) by
n?t:U? [0,1], (n? t)(x)=max{mx),t(x)}. The intersection is defined by
mt:U? [0,1], (mnt)(X) =min{n{X), t(X)}. These definitions extend to families of fuzzy
subsets: if {m};7, 1 F (U), then we set:

ﬂMU®[01]aﬁHx )=int{u ()} Un:u @ [0a] aUu.—(x) sup{is (<}

il eil | il eil |
v) For ml F (U), thefuzzy subset M1 F (U) given by m(x) = 1- n(x), xI U, iscaled
the complement of m.

1.6 REMARK. (F (U), n, ? , ') is a de Morgan agebra (as opposed to (P (U), C, E, )
which is a Boole algebra). Note that {0, 1} has a Boole algebra structure (with respect to
min, max, x¢=1- x), while [0, 1] with the same operations is just a de Morgan algebra. On
F (V) the following operations can be defined:

“+7bym+t:U? [0,1],(m+1t)(x)=nx) +t(X) —nxt(x)," xI U.
“."pym-t:U? [0],(mt)X) =mx)t(x)," xT U.
?7bym? t:U? [0,1],(M? t)(X)=min{1, mx) +t(X)}," xI U;

?7bym? t:U? [0,1],(m? t)(X) =max{0, mx) +t(x)—1}," x|
2.2 Hyperstructures
The concept of hypergroup was introduced in 1934 by F. Marty as a natura
generalization of the notion of group. Many applications in geometry, combinatorics, group

theory, automata theory etc. have turned hypergroup theory and subsequently
hyperstructure theory into arelevant domain of modern algebra.
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2.1 DEFINITION. Let H be a nonempty set. Let P*(H)=P(H) \ {A ={A|Al H,
Al /B . A hyperoperation "*" on Hismapping* : H” H? P*(H). Foranyal Hand B
[ H,B! /& wedenoteby a* B=|Ja*b. Similarly onedefinesB* a. If A, BT P*(H), let

b B

A*B=|Ja*b.
a A
bl B
A nonempty set endowed with a hyperoperation "*" on H is called a hypergroupoid. If,
"a b, ¢l H, we have a* (b*c)=(a*b)* c (associativity), then H is called a
semihypergroup. If a semihypergroup (H, *) satisfies a* H=H*a=H, "al H
(reproducibility) then H is called a hypergroup. A hypergroup is called commutative if, " a,
bl H,a*b=b* a.
2.2. REMARK. A hyperoperation * defined on a set H induces two hyperoperations "/"
and"\". For every x, y1 H, define:
x/y={al H|xl a*y}, x\y={bT H|xT y* b}.
If "*" is commutative, then x / y=x\y, " x, y1 H. Also, the reproducibility axiom is
equivalent to the condition: " x,yT H,x/y! Fandx\y?! /E

2.3. DEFINITION. A commutative hypergroup (H, *) is called a join space if, " a, b, c,
dl H,albNcd?! Aimpliesard\b*ct A&

3. Fuzzy algebraic structures
3.1 Fuzzy subgroups

1.1 DEFINITION. Let (G, -, €) beagroup and let m: G® [0, 1] be afuzzy subset of G. We
say that misafuzzy subgroup of Gif :
) mxy) 2 min{n{x), my)}, " x, yl G;
i) mx 3 nmx), " x1 G.
If moreover mixy) = myx), " x, yi G, then mis called a normal fuzzy subgroup of G.

1.2 REMARK. If mis afuzzy subgroup of G, then mix *) = n{x) £ n{e), " x1 G. Moreover,
mis anormal fuzzy subgroup if and only if mfy "*xy) 3 nx), " x, y1 G.

The next characterization is typical for all “fuzzy substructures’.

1.3 PROPOSITION. Afuzzy setm: G ? [0, 1] isa (normal) fuzzy subgroup of G if and only
if the level subsets G, are (normal) subgroups of G for all a1 Imm

1.4 DEFINITION. We say the fuzzy set (F, m) satisfies the sup property if, for every
nonempty subset A of Imm there exists x1 {yT F|nfy)T A} such that m{x) =sup A. In
other words, mhas the sup property if and only if any nonempty subset A of Immhas a
greatest element.

1.5 PROPOSITION. Let (G, -, €), (H, -, €) begroups, f: G? H group homomor phism and
mh fuzzy subgroups of G, respectively H. Then f }(h) is a fuzzy subgroup of G. If (G, m) has
the sup property, then f(n) is a fuzzy subgroup of H.



3.2 Fuzzy ideals

2.1 DEFINITION. Let (R, +, ) be aunitary commutative ring. A
1) A fuzzy subset s : R® | iscaled afuzzy subring of Rif," X, y| R

nx- y) 2 min{m(x), n(y)}; mixy) 2 min{m(x), n(y)}.
i) A fuzzy subset s : R® |iscaled afuzzyideal of Rif," x,yl R

nx-y) ® min{m(x), my)}; mixy) * max{n(x), nmy)}.

2.2 PROPOSITION. Let m: R® [0, 1] be a fuzzy ideal of R. Then:
) m(1) =n(x) =n(-x) =m0)," xI R
i nmx-y)=m0) b mx)=ny)," xyl R
i) mx) <nmy), "yl RP nix-y) =nix) =nty - x).

2.3 PROPOSITION. A fuzzy subset m: R® [0, 1] isa fuzzy subring (ideal ) of Rif and only
if all level subsets ;Ra, a1 Imm are subrings (ideals) of R.

2.4 REMARK. The intersection of afamily of fuzzy ideals of Risafuzzy ideal of R. This
leads to the notion of fuzzy ideal generated by a fuzzy subset s of R, namely the
intersection of al fuzzy idealsthat include s, denoted <s >. Wehave: <s >: R® [0, 1] is
givenby <s > (x) =sup{al [0,] |xT <,R.>}.

2.5 ProPOSITION. The union of a totally ordered (with respect to the relation
mE£h U m(x) £ h(x)," x| R) family of fuzzy ideals of Risa fuzzy ideal of R.

2.6 DEFINITION. Let m g be fuzzy ideals of R. The product of mand q is:

m-q:R® [0, 1], (m-q)(x) = SléJIO {min{min{n(y), a@)}}}." xI R
X=a VYig

Thesumof mand gis:
m+q:R® [0, 1], (m+q)(x) =sup{min{r(y), a@}|y, zI Ry+z=x,"xI R

2.7 REMARK. In general, for m g fuzzy subsets of a set S endowed with a binary
operation ", one definesthe product ng : S® [0, 1],
Irsup{min{rr(y),q(z)}},if thereexist y,zI Ssuchthat x = yz,

(Me) (9= =
10, otherwise

For any m q fuzzy ideals of R, we have mqg = <ng >.

2.8 PROPOSITION. Let f: R® R' be a surjective ring homomorphism and ma fuzzy ideal

of R, M afuzzy ideal of R. Then:
1) f(m isafuzzy ideal of R;
i) (M) isa fuzzy ideal of R.

2.9 DEFINITION. A nonconstant fuzzy ideal m(|lm nj > 1) of aring R is called a fuzzy
primeideal if, for any fuzzy idealss, qof R,sqi mb si morgi m



3.3 Fuzzy rings of quotients

The study of the fuzzy prime ideals of a ring leads naturaly to the question of the
existence of a "fuzzy localisation" device, that is, to the problem of the construction of a
fuzzy ring of quotients. Let R be unitary commutative ring. R* denotes the set of the
invertible elements of R.

3.1 DEFINITION. A fuzzy subset s : R® [0,1] is caled a fuzzy multiplicative subset
(FMSfor short) if:

i) s(xy) 2 min(s(x),s(y)," xyl R
i1)s(0) =min{s(x) : xI R};
iii)s(1) =max {s(x): xT R}.

3.2 PROPOSITION. The fuzzy subset s of the ring R is a FMS if and only if every level
subset s; ={x1 R:s(x)3 t}, t>s(0), isamultiplicative system (in the classical sense).

Recall that a multiplicative subset Sof Ris saturated if xyT Simpliesx,y1 S

3.3DEFINITION. A FMSs of aring Ris called saturated if, for any x, yT R,
s(xy) =min (s(x), s(y))-

3.4 PROPOSITION. The fuzzy subset s of thering Ris a saturated FMSif and only if every
level subset s isa saturated multiplicative system, " t >s(0).

3.5PropPosITION. If misa fuzzy primeideal of aring R, then 1- mis a saturated FMS.

3.6 PROPOSITION. Let s bea FMSof thering R. Then the fuzzy subset S”, defined by
S (¥ =sup{s(xy):yl R}
isa saturated FMS, withs £ S . Moreover, if t isa saturated FMSwiths £t,then S £1t.
Thisresult entitlesusto call S above the saturate of s.

Let s be a FMS of the ring R and m=s(0). For every t>m, we may construct the
classical ring of fractions s{' R=S with respect to the multiplicative subset s:. Let | ¢
denote the canonical ring homomorphism R® S. If s<t, since s;i s, the universality
property of the ring of fractions yields the existence of a unique ring homomorphism
Jts: S® S such that j 0] 1 =] s The system of rings and homomorphisms (S, j ), t,
sT ]m, 1] is an inductive system (if ]m, 1] is endowed with the reverse of the usual order).
Let s 'R denote the inductive limit of this system and let | be the canonica ring
homomorphismR® s R (the inductive limit of thej ¢, t > m).

Itisnatural to call s 'Rthe ring of quotientsrelative to the FMSs.

3.7 ProPOSITION. With the notations above, | has the following universality property:
for every t>s(0),j (s)l (s '1R)*; if Tisaringandy : R® T isa ring homomorphism
such that for every t>s(0), j (s) I T*, then it exists a unique ring homomorphism
f:s'R® Tsuchthatfoj =vy.

3.8 PROPOSITION. Thereis a canonical isomorphismy :s 'R® s 'R.If [ R® s 'R
denotes the canonical homomorphism, then | =y o .

By applying Zorn's Lemmato the set P, one proves:
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3.9 ProposITION. If s isa FMSin Rand mis a fuzzy ideal such that ms = A, then the
st P={h: hisafuzzyideal of R, h(s = & ml h} has maximal elements and any such
element isa fuzzy primeideal. Thusit exists a fuzzy primeideal p suchthat p(s = A&

3.10 PROPOSITION. Let p be a fuzzy prime in R and denote by R, the ring (1 - p)'lR.
Then R, isalocal ring.

3.4 Fuzzy intermediate fields

Let F/K be afield extension and let I(F/K) = {L| L subfield of F, K L} be thelattice of
its intermediate fields (we also called them subextensions of F/K). If F/K is a field
extension and c1 F is agebraic over K, then we denote by Irr(c, K) T K[X] the minimal
polynomial of c over K.

4.1. DEFINITION. Let F/K be an extension of fieldsand m: F ? [0,1] afuzzy subset of F.
We call mafuzzy intermediate field of F/K if," x, y1 F:
mx - y)  min{ ), my)}
nixy ) 2 min{nix), nty)} ify* O;
mx) £ mk), " k1 K.
Let FI(F/K) denote the set of all fuzzy intermediate fields of F/K.
If mi FI(F/K), then mis a constant on K.
For any fuzzy subset m:F? [0,1]] and sl [0,1], define the level set
m:={x1 F|mx)3 s}.

It iswell known that a fuzzy subset m: F 2 [0,1] isa fuzzy intermediate field if and only
if, " sl Imm thelevel set mis an intermediate field of F/K.

4.2. THEOREM. Let F/K be a field extension. Then every fuzzy intermediate field of F/K
has the sup property iff there are no infinite strictly decreasing sequences of intermediate
fields of F/K.

4.3. REMARK. This result can be applied, mutatis mutandis, to any algebraic structure
for which is defined a notion of "fuzzy substructure”. For instance, let (G, -) be a group and
lisits neutral element. By replacing in Theorem 4.2 "intermediate field" with "subgroup”
and K (the base field) with the trivial subgroup {1}, one obtains the following fact:

4.4, PROPOSITION. Let G be a group. Then every fuzzy subgroup of G has the sup
property if and only if there are no infinite strictly decreasing sequences of subgroups of G.

Similarly, in the case of fuzzy ideals, we have:

4.5. PROPOSITION. Let R be a unitary commutative ring. Then every fuzzy ideal of R has
the sup property if and only if R is Artinian (there are no infinite strictly decreasing
sequences of ideals of R).

4.6. DEFINITION. [2] Let F/K be an extension of fieldsand ml  FI(F/K). Then mis called
afuzzy chain subfield of F/K if " x, yT F, mx) =mfy) U K(X) = K(y).

Here is afuzzy characterization of the fact that I(F/K) is achain.



4.7. THEOREM. [[2], Th. 3.3]. The intermediate fields of F/K are chained if and only if
F/K has a fuzzy chain subfield.

4.8. THEOREM. Let F/K be an extension such that the intermediate fields of F/K are
chained. Then:

a) F/K isalgebraic.

b) Any intermediate field L of F/K with L * F isa finite simple extension of K.

c) (I(F/K), I ) satisfies the descending chain condition (there is no strictly decreasing
sequence of intermediate fields of F/K). Thus, (I(F/K), I ) iswell ordered.

4.9. COROLLARY. Let F/K be afield extension.

a) Assume that any proper intermediate field of F/K is a finite extension of K. Then
every ml  FI(F/K) has the sup property.

b) If the intermediate fields of F/K are chained, then every ml FI(F/K) has the sup
property.

c) If every mi  FI(F/K) has the sup property, then F/K is algebraic.

4. Applications and connections

4.1 Fuzzy numbers

1.1. DEFINITION. Let (G, -) be a set endowed with a binary operation " (usually a
group). Let m gl F (G). Weusethedefinition 3.2.7 for m*q | F (G),
}sup{min{m(y),q(2)}},if thereexist y, z1 Ssuchthat x = yz,
(M*q)(x)=| ==
10, otherwise
Thus, "*" isabinary operation on F (G).
If Gisagroup and eisits neutral element, we denote c,, by e. For any mi F (G), letiv:

G® [0,1],7(¥: mxY,"xT G.

1.2. PROPOSITION. Let G be a group.
i) The operation "*" on F (G) is associative;
i) If G is commutative, then "*" is commutative.
iii)" ml F(G), m*e: e*m: m
iviel m*@, el A*m

1.3. PROPOSITION. Let mt, n1 F (G). Then:
Dmi tPb m*ni t*nn*min*t;
mm*@E? n=m*t)? (m* n;t? nNn*m=@t*mM? (n*n,
H)m* (t C n)=(m*t)C (M*n);tCn*m=(@t*mC(n*mn.

1.4. DEFINITION. A fuzzy number isamappingm:R ® [0, 1] (whereR isthefield of rea
numbers) such that there exists Xml R with m{x,) =1, the set {x | n{x) * G} is bounded and
thelevel sets R, areclosed intervals(a | [0,1]).

For any r T R, the mappings T:R® [0,1], T (X) =i are caled

degenerate fuzzy numbers.



One usually takes the fuzzy numbers of the following type:
i0, x<a
2, (¥, xI [ab);
mx) = }l x1 [b,c]; (1)
(¥, xI (c.dl;
f0, x> d.

wherea£ b £ c£ darereds, and p;, p>: R ® R satisfy the conditions that turn min afuzzy
number asin the definition.

For py(x) = ﬁ, Po(X) = % one gets trapezoidal fuzzy numbers. If b =c, triangular
fuzzy numbers are obtained. A trapezoidal fuzzy number as above is denoted by
A =(a, b, c, d), respectively A =(a, b, d) for triangular fuzzy numbers.

The operations with fuzzy numbers m h are defined as in the case of F (G) above:

m* h: R ® [0, 1], (m* h)(2) = sup {min{n{x), h(y)}},

Xoy=Z

By replacing "?' with "+", ".", "-" ":") one obtains the operations "? ", respectively
.

We use the following notations:
- R isthe set of nondegenerate fuzzy numbers,
-R,={ml R|mx)>0pb x>0},R.={mi R |n{x)>0P x<0},

-R*=R,? R_;
1.5. REMARK. Foranymh1 R andri R, wehave " x1 R:
(r? M) =nfr —x); (m? h)(x)=smTJF|?{min{n(y),h(x- Y}
yl

.I. —9 rt o i N <
_ 1 &rg i supt mint p(y), Y x1 0
(F2mMM=1.1 40 M =iyt 1 ()“Sy%;v) ,

g =0 {maduOln),  x=0

1.6 REMARK. Fuzzy numbers can be characterized by a family of intervals (intervals of
confidence). Let mi R, al [0, 1]. Define m = [ x,, X, 1, where x, =inf{x| nm{x) =a},
X, =sup{x|nfx) =a}. If misof thetype (1), we get:

p,"{a}).p;'fahl, a* 1

[)_(a’)_(a]:’:‘[b,c] a=1

The conditions p; strictly increasing and p, strictly decreasing determine the fuzzy
number if the confidence intervals are given. For the numbers of thetype T (r T R) the use

of confidence intervals is superfluous. In this context the operations with fuzzy numbers
can be defined asfollows: " mh 1 R,withm =[x, X, 1, h, =[y,, Y. ], we define:

(MA h), =[x, +Y,, X +¥.]1;(M? h), =[x, - V., X - Yali
9



(m? h), —[mln{X YarXa Yar Xa Yar X Yot MBX{X. Va0 Xg Voo X, Yo X, Va3

™

1.7 REMARK. For trapezoidal or triangular fuzzy numbers, A =(a, b, ¢, d), respectively

ing W o1 b @l 0.).

A~

m? h
(m? h), = T

< |g;<|
< |gn><

Ya
2 X
Yo Y,

m:rgm
< |Sln><
I~< |Q;<|
I~< |Q;<|

~

A =(a, b, ¢), the confidence intervals are A, = [(b — a)a + a, (c — d)a + d], respectively
A, =[(b-aa+a (b-ca+c,al [01].
In these cases, Ag = [4a, ], respectively A, =[a, b].
Since Ap and A; determine completely the triangular fuzzy number m sometimes it is
taken the following definition (for A = (a4, by, ¢y), B = (ay, by, ©))):
A A B= (al + Ay, bl + bz, c, + Cz)' A? B= (a]_az, blbz, C1C2), for dp, d 3 0,

A? B=(a;- ap,b;- by,c-¢); A? B= g foral,a2>0
G, 2 2!25
If Alsatrlangular fuzzy number, A =(a, b, ¢), we denote dso -A =(-a,-b,-¢) and
Al= (c 'vla )|fa>0
For any al R, let 0O=(-a, 0, a) and for any a3 1, let 1a:(a'l, 1, a). We have
02 A Op =04 +b, 1a? 1p = Lap.

1.8 DEFINITION. We define on the set of triangular fuzzy numbers R the following
relations : A1 = (ay, by, ¢1) and A, = (ap, by, ¢) are A-equivalent (and write A; ~aA») if
there exist 0,1, Oy such that A;A 0, = AA 0,; we say that Ay = (ay, by, ¢1) and A, = (ay, by,
Cp) are? -equivalent (wewrite A; ~ Ay) if thereexist 1,, 1, such that A1? 1, = A5? 1;.

It is easy to seethat 0, ~4 O, for everya, b1 R and 1, ~ 1, foreverya,b? 1.

1.9 PROPOSITION. Therelations~x ~ are equivalence relations.

LetRa =R/~ and for every AT Rydenote A T R theequivalenceclassof A. For A
, BT Ra, wedefine A[+] B = A[+]B.

1.10 ProPOSITION. The operation [+] is well defined and (R &, [+]) is an abelian group,

O_a being its neutral element (" a1 R); A is the symmetrical element of A

1.11 REMARK. A similar result can be obtained for R» = R/~ , where ,R is the set of
triangular fuzzy numbers (a, b, ¢) witha > 0.

We note the fact that the operations"? " or "? " defined before (using m*h or confidence
intervals) do not necessarily lead to triangular numbers if one starts with triangular
i Vit [01];

numbers. For instance, 12 1= _
10, otherwise

(1: (1,1,)). This justifies somehow the

operations defined above ("component-wise"), but the deviations for the variant given by
“*” for product and quotient are considerable. On the other hand, one obtains for usual real
numbers (considered as fuzzy numbers) the usual operations. The problem of building an
acceptable arithmetic for fuzzy number is still open.

10



4.2 Smilarity relations and partitions

The role played by the notion of relation in the structure of mathematical concepts is
well known. We review known results on the introduction of this notion in the framework
of fuzzy set theory.

2.1 DEFINITION. Let X and Y be sets. We call afuzzy relation between X and Y any fuzzy
subset r : X~ Y? [0,1] of the (usual) cartesian product X~ Y. If X=Y, wesay that r isa
fuzzy relation on X. Let R ¢(X) be the set of all fuzzy relations on X.
ilif x=
The diagonal fuzzy relationon XisD: X"~ X? [0,1], D(x,y) = io if 1 ::
|

If r: X" Y? [0] is a fuzzy relation between X and Y, then r oy X2 [0,1]
defined by r “(y, X) =r (X, y) iscalled theinverseof r .

In the same manner as in the classical case, since the fuzzy relations are, in fact, fuzzy
subsets, one may introduce the operations ? and n with fuzzy relations, as well as defining
the inclusion between the fuzzy relations. Among the many possibilities of composing the
fuzzy relations, we present the definition due to ZADEH:

Let X, Y, Zbesasandr: X Y® [0,1], x:Y  Z® [0, 1] fuzzy relations. The
composition of the fuzzy relations r and x is the fuzzy relation r - x: X" Z® [0, 1],

defined by r o x(x, 2) = sup inf{r (x,y).x(y,2)}.
vy
Forr T R¢X),wesetr °=Dandr ""*=r"2,"nT I .

2.2PROPOSITION. i) Ifri: X™ Y® [0,1],r2 Y Z® [0,1],r3:Z" U® [0, 1] arefuzzy
relations, then (r jor 2)or 3 =1 10(r 2°r 3) .

iyLetr :Y  Z® [0,1],r1andro: X~ Y® [0, 1] be fuzzy relationssuch that r1 [ 1.
Thenrqor 1 1 ger.

iiiyLetr: Y Z® [0,1],r1andr2 X~ Y® [0, 1] be fuzzy relations. Then

(r 2Ur 2)er = (r 2or )U(r 2or ) and (r 11 2)or I (r 201 )O(r 201 ).

2.3 DEFINITION. Let r be afuzzy relation on afuzzy set (X, n).
- r iscaledreflexiveif r (x, X) = m(x), for any x1 X (r (x,X) = 1 for an usual set);

- r iscaled symmetricif r (x, y) =r (y, x), forany (x, ) T X" X;
- r iscaled Z-trangitiveif r (x, 2) 3 sup min{r (x, y), r (y, 2}, forany x, z1 X;
Wi X

The fuzzy counterpart of the classical equivaence relation isthe similarity relation.

2.4 DEFINITION. A relationr : X~ X® [0, 1] is called a similarity relation on X if it is
reflexive, symmetric and Z-transitive.

2.5 PROPOSITION. Let r : X~ X® [0, 1] be a similarity relation and x, y, z1 X. Then
re,y)=r(y,2orr(x,2=r(y,2orr(x, 2 =r(xy).

By using the level subsets, one obtains:

11



2.6 PrRoOPOSITION. The relationr : X* X® [0, 1] is a similarity relation if and only if,
foranyal [0, 1], (X" X)aisan equivalence relation on X.

2.7 PROPOSITION. Let r : X~ X® [0, 1] be a fuzzy relation on X. The smallest similarity
relationrswithr | reisrgx, y)=sup{(r? D> r H(x, y)|nT I }.

The notion of equivalence class leads, in this setting, to the notion of similarity class. Let
r: X" X® [0, 1] beasimilarity relation and x1 X. The similarity class of representative x
is ry:X® [0,1], ryy)=r(xy), for any yI X. Unlike the equivalence classes, the
similarity classes are not necessarily disjoint (with respect to fuzzy intersection).

We point out some connections with the fuzzy partitions. Let Xbeasetand J={1, 2, ...,
n}. Thesymbols“ -” ,“? ", “? ” denote the operations on F (X) defined at 2.1.6.

2.8 DEFINITION. Thefuzzy setsm, m, ..., my1 F (X) are called:
- sdigoint, if," kT J, (? i 209m)? M= A
- w-digoint, if ? 1cignm =/
- i-digoint, if, " r,sl Jrismnm=4&
- tdigoint, if," r,sl J,rtsm -m=A

We say that the letters s, w, i, t are associated, respectively, to the operations “? 7, “? 7,
“n H’ “'H.

2.9 REMARK. The above definjtions can be extended in a na}ural manner to a countable
family of fuzzy setsof F (X): " al {s,w,i,t},m,m, ..., m, ...I F(X)arecalled a-disjoint
if, foranynl I ,m, m, ..., m;area-digoint.

210REMARK. @ If mn m=/Athenm ? m =/ The converseis not generally true. It
istrueif m and m are characteristic functions. A

bym? m=/A&U (m? m)(x)=mX) +m(Xx)," xI X A

c) Let (A)ii s afamily of n subsets of X and let c; the characteristic function of A;, " i1 J.
Thenc, il J, ares-digointif andonlyif," i,jT J,i? jimpliesci? c;=/&

dmnm=/Aifandonlyifm -m=A

em,m, ..., maresdigointb m, m, ..., m; arew-digoint.

2.11 PROPOSITION. We have:

a) m,m, ..., maresdigointU "
b) m,m, ..., mares-digointU "
Q) m,m, ..., marew-disoint U " xi
d m,m, ..., marew-disoint U " xi

XI X, m(X) + m(X) + ...+ my(X) £ 1;

XA X, Siam) =? it 5 m(X);

X, my(X) + mp(X) + ...+ my(X) £ 1;
XmXxX)+mX+...+m(Xx)En- 1

Correspondingly, we obtain the notion of s-partitionwiths T {s,w, i, t}.

2.12 DEFINITION. Let s be an element of {s, w, i, t} and let w be the associated operation.
The family {m}ii; | F (X) is caled a fuzzy s-partition of mi F (X) if m, m, ..., m are
s-digoint and wij ; m=m Similarly, one can define the countable partitions of a fuzzy
subset of X. When m=cx, with A subset of X, the s-partition is called a fuzzy s-partition of
A

12



213 REMARK. If {m, m, ..., m} isan s-partition of mand n £ m then {n-m, n-m, ...,
n -my} isan s-partition for n -m

Letr : X~ X® [0,1] be a non-degenerate similarity relation (there exist x, y1 X, x* vy,
such that r (x, y) = 1). In the following we consider that X is a finite or countable set. For
any x1 X we denote m: X® [0,1] the function such that m(y) =1 if r(x, y)=1 and

m(y) =0ifr(x,y)* 1.

2.14 ProPOSITION. In the conditions above, if $z1 X such that m(2) = m(y) = 1, then
m = .

The relation on X, defined by x~y if and only if my=m, is an equivalence relation on X.
Let K = X/~ and denote by [x] the classof x, " xT X. Define my = ny

2.15 PROPOSITION. Theset H ={my | xT X} isa fuzzy w-partition and a fuzzy i-partition
of X.

4.3 Connections between hyperstructures and fuzzy sets

The connections between algebraic hyperstructures and the fuzzy sets may take into ac-
count the following variants:

A. Let H be anonempty set. One may replace (in the definition 2.2.1 of a hyperoperation
on H) P"(H) with F "(H), where F "(H) ={m: H® [0, 1] : $x1 H such that n{x) * 0} (the
“family of nonempty fuzzy subsets of H”).

B. For a given hyperstructure, define a fuzzy subhyperstructure in an analogous manner

to the one used to introduce the fuzzy subgroups.
C. Associating a hyperstructure to afuzzy set (and conversely).

Concerning the variant A above, we have:

3.1 DEFINITION. Let H be anonempty set. An application - : H” H? F (H)iscaledan
f -hyperoperation on H.

Fora, bl H,KT P"(H), mi F "(H), wedefine:

a? b={x1 H|(@b)x ! 0}, a ’? K=Udka? k K? a=Uak k? &

a?b={xT H|@bX=1,a? K=Ugka? k,K? a=Uqk kK a;

a-KT F'(H), (a K)(X =sup{(a K | ki K},"xT H.

K-al F (H), (K-a)(x) =sup{(k-a)(x) |kT K}," xT H.

a- m=a- supp(m; m a = supp(n- a, where suppm:={x1 H|n{x)* 0}.

We introduce some conditions related to reproducibility. We say that the
f-hyperoperation - " on H satisfies the condition:

(R)if:a-H=cy=H-a,"al H;

(Ry)if:a? H=H=H? a, " al H;

(Ry)if:a? H=H=H? a," al H.

3.2 DEFINITION. A nonempty set H endowed with an f-hyperoperation - is called an

fi -hypergroup (i1 {1,2, 3}) if "-" is associative (a-(b-c)=(a-b)-c, "a b, cT H) and
satisfies the condition R;.
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3.3 PROPOSITION. @) (H, -) isa fs-hypergroup P (H, -) isa f;-hypergroup b (H, -) isa
fo-hypergroup.

b) For anyil {1, 2,3},if (H, -)isafi-hypergroup, then (H, ? ) is a hypergroup.

c) If (H, *) is a hypergroup, then (H, -) is a fi-hypergroup, for any i1 {1, 2, 3}, where
ilif xI a*b

- tH” H? F’(H)isgivenby (a-b)(x) = | ise’
10 otherwise

The variant C above can be used in the following manner: if m: A® L isan L-fuzzy set,
where (L, U,U) is alattice, define the following hyperoperation on A:
(1) ab={xT A: m@Unm(b) £ mx) £ m(@)Un(b)},

where”“ £ " isthe order relation on L.

3.4 ProOPOSITION. In the conditions above, for every a, b, cT A, we have:
al ab;
ii) axb = bxa;
iii) a«(axb) = a+b = (axa)«b = (axa)+(b+b) = (axb)+b.

3.5 ProrosiTION. If L) is a distributive sublattice in L (it is stable with respect to the
operations Uand U and al(bUc) = (aUb)U(alk), for any a, b, ¢ m(L)), then:
iv) (axb)+c = ax(b+c), for everya, b,cl A.

From 3.4.i) it follows at once that a<A = A«a, for any a in A. Together with 3.4.ii) and
3.5.iv), thisallows us to say that (A, +) is a commutative hypergroup if (L) is a distributive
sublattice in L. Moreover, 3.4.iii) shows that (a~a)+(b+b) = a«b; the set a<b depends only on
a~a and b+b.

3.6 QUESTION. A natural problem arises: characterize the lattices L (e.g. by means of
identities) with the property that the hyperoperation induced on L (viewed as an L-fuzzy set
byl :L® L)asin(1)isassociative. The result 3.4.iv) says that the class of lattices with
this property includes the distributive lattices. In the case L =[O0, 1] (or, more generdly, a
totally ordered set), the hypergroup obtained above is even ajoin space.

Suppose now that n{L) is a sublattice which possesses a greatest element denoted 1 (that
is, x£ 1 for any xin (L)). We then have the additional properties:

3.7 PrROPOSITION. In the conditions above, there existswi A, such that:
V) For anya, b1 A, the condition asw = b-w implies a«a = b:b;
vi) For anya, b1 A, thereexissm, M1 A such that

Mew = ({x*w : xT a*b}

and (){x*w: x*w E {a,b}} =mw.

Let us consider the reverse problem: given a hyperstructure (H, «) satisfying the proper-
tiesi)-iii) and v)-vi) above, can one find a lattice L and a mapping m: H ® L such that “ «”
is the hyperoperation induced by m as in (1)? In order to answer this, let H satisfy the
properties above. Define arelation “~" on H by:

a~b iff axa = b:h.

One readily checks that thisis an equivalence relation on A. Let L be the factor set H/~
(theset { & :al H}, where & ={xI H: x~a} isthe equivalence class of a). Define arela
tionr onL by:

foranya, bl L, ar b iff bsbi a«w.
14



Therelation r iswell defined (does not depend on the representatives a and b). Thisisin
fact an order relation on L and the ordered set (L, r) isalattice. Define now the application
m: H® L as the canonical projection: ma) = &, for any al H; define the hyperoperation
“+"inHasin (1).

3.8 PROPOSITION. In the conditions above, for anyaand b in H,

ab={xT A: m@Un(b) £ m(x) £ n(a)Un(b)} .
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