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Abstract
The main aim of this paper is to show how fuzzy sets and systems can be used to produce
optimization algorithms able of being applied in a variety of practical situations. In this way,
and on the one hand, fuzzy  sets based heuristics for Linear Programming problems are
considered. To show the practical realisations of the proposed approach, the  Travelling
Salesman  Problem is assumed, and a new heuristic proving the efficiency of  using  fuzzy rules
as termination criteria is shown. On the other hand, the basic ideas of a Fuzzy Adaptive
Neighborhood Search (FANS) heuristic algorithm are also presented. Its main motivation is to
provide a general purpose optimization tool, which is easy to tailor to specific problems by
means of appropriate definition of its components. The Knapsack Problem with multiple
constraints will serve to show the high solution potential of this another fuzzy sets based
heuristic algorithm.

Keywords: Heuristics, Knapsack Problem, Fuzzy Rules, Fuzzy Sets and Systems, Travelling
Salesman Problem, Linear Programming, Genetic Algorithms, Simulated Annealing, Decision
Support Systems.

1 Introduction
From a broad point of view the interface between two different areas, Decision Support
Systems and Fuzzy Sets and Systems, is considered in this  paper.  On  the one hand, the term
Decision Support System (DSS) was coined at the beginning of  the  70s to feature the
computer programs that could support a user in making  decisions  when facing ill-structured
problems. Nowadays,  software for supporting decision-making is available for almost any
management problem. On the other hand, in the early sixties, based on the fact that classical
logic does  not  reflect,  to  the  extent  that  it should, the omnipresent imprecision in the real
world,  L.  A.  Zadeh  proposed  the Theory of Fuzzy Sets and Fuzzy Logic. Nowadays Fuzzy
Logic  is  employed  with  great success in the conception, design, construction and utilisation
of a  wide  range  of products and systems whose functioning is directly based on  the  ways
human beings reason.

As it is well known, design, construction and search for exact algorithms solving real life
problems are also key objectives in the DSS area and, although this kind of problems generally
has a high level of difficulty, they need to be solved because of their importance. Both facts,
difficulty and importance, together with increasing computer power, encourage the
development of heuristics which, even though it may lead to non-optimal solutions, can solve
the problem at hand based on the decision makers' satisfaction. In this way the decision maker
may prefer to obtain satisfying solutions according to his (her) wishes than optimal ones.

Consequently, in order to face a problem in terms of satisfaction, and not only optimization,
heuristic methods must search for solutions not only providing good values for the objective
function, but also showing some additional characteristics. In general, those characteristics will
be of a subjective nature and therefore they could be well modelled by fuzzy sets.



The last decades have witnessed a flow of information from classical fields, such as
Operational Research or Control Theory, to the area of Fuzzy Sets and Systems, which has
provided very fruitful results.  However, it has not been so usual to see this continuous
interaction in the other direction. In order to bridge this gap, the aim of this contribution is
twofold: First one wants to show how fuzzy sets and systems can help to provide robust and
adaptive heuristic optimization algorithms able of being applied in a variety of situations. The
second objective  is to give a view, as broad as possible, on the practical applications that fuzzy
sets based heuristics algorithms have by describing two particular fuzzy sets based heuristics.

On the one hand, fuzzzy sets based heuristics for Linear Programming (LP) problems will be
considered in the next section. LP provides a very powerful context that has been  used in a
range of different applications, and has a documented history of success [11, 14]. On the other
hand, LP assuming fuzzy parameters, i.e., Fuzzy Linear Programming (FLP) is one of the best
studied topics in the field [2, 3, 6]. To show the practical realisations of the approach, the
Travelling  Salesman  Problem (TSP) will be considered, and a heuristic proving the efficiency
of  using  fuzzy rules as termination criteria will shown [5, 13, 15, 16, 17].

In the contextt of DSS, simple general purpose optimization tools are key elements to decision
makers, because they enable them to obtain initial solutions with minimal knowledge of the
problem to be solved. Such initial solutions may serve as a guide for further improvements.
Among those simple approaches are neighborhood or local search based heuristic techniques.
Hence, on the other hand, in the last section we will present the basic ideas of a Fuzzy Adaptive
Neighborhood Search (FANS) heuristic algorithm. Its main motivation is to provide a general
purpose optimization tool, suitable to be embedded in a DSS, which is easy to tailor to specific
problems by means of appropriate definition of its components. FANS is termed Fuzzy,
because the solutions are qualified in terms of fuzzy valuations, and adaptive, because its
behaviour is adapted as a response to the state of the search. Some illustrative results for
practical problems will show the high solution potential of this algorithm.

2 Using fuzzy rules for terminating algorithms
The key point in this section is that FLP methodologies may help to find solutions for problems
in which  to find an optimum solution is not easy. As it is well known there are a  lot  of  NP
problems  (Knapsack,  Travelling Salesman, etc.) which cannot effectively be solved in all
cases, but which are of the utmost importance in a variety of real applications. In  these
problems the decision-maker must usually accept approximate solutions instead of optimum
ones.  At this point the aim here is to show how the  FLP can help classical MP models and
techniques by providing approximate (fuzzy) solutions that may be used by  the decision-maker
as help to quickly obtain a good enough solution for these problems.

Let‘s justify this fact as follows. An algorithm for solving a general classical  optimisation
problem  can  be viewed as an iterative process that produces a sequence of points according to
a prescribed set of instructions, together  with  a  termination  criterion.  Usually we are
interested in algorithms that generate a sequence  x1,x2 ,...,xN  that converges to an overall,
optimum solution. But in many cases however, and  because of the difficulties in the problem,
we  may  have  to  be  satisfied  with  less favourable solutions. Then the iterative procedure
may stop either 1) if a  point  belonging to a prefixed set (the solution set) is reached, or 2) if
some prefixed condition for satisfaction is verified.

But, the conditions for satisfaction are not to be meant as universal ones. In fact they depend on
several factors such as  the decision-maker, the features of the problem, the nature of the
information available, ... In any case,  assuming that a solution set is prefixed, the algorithm
will stop  if  a  point  in  that solution set is reached. Frequently, however, the convergence to a



point  in  the solution set is not easy because, for example, of the existence of local optimum
points, and hence we must redefine some  rules  for  terminating  the  iterative procedure.

Roughly speaking,  the  possible  criteria  to  be  taken  into  account  for terminating the
algorithms are nothing but control rules.  Thus these rules could  be associated to the two above
points: the  solution  set,  and  the  criteria  for terminating the algorithm. As is clear, fuzziness
can be introduced in both points, not assuming it as inherent in the problem, but as help for
obtaining, in a more effective way, some solution for satisfying the decision-maker’s wishes.
This is meant so that the  decision-maker  might be  more  comfortable when obtaining a
solution expressed in terms of satisfaction instead of optimisation, as is the case when fuzzy
control rules are applied  to  the control processes. Therefore, and in the particular case  of
optimisation  problems [5, 17],  it  makes sense to consider fuzziness

a) In the Solution Set, i.e., there is a  membership function giving the degree with which a
point  belongs  to  that  set,  and

b) On the conditions for satisfaction, and hence Fuzzy Control rules  on the criteria for
terminating the algorithm.

In the particular case of LP problems, if a conventional problem is assumed

Min {cx / Ax = d; x ≥ 0}

the Simplex Algorithm, with the usual denotation, can be summarised as follows,

1) Find an initial extreme point x with basis B,

2) Let x be an extreme point with basis B, and let R be the matrix corresponding to the
nonbasic variables. Compute cBB-1R - cR

If this vector is non positive then stop, x is an optimal extreme point.

Else select the most positive component cBB-1aj-cj  and compute yj = B-1aj :

If yj = B-1aj  is less than or equal to 0 Then stop. Objective unbounded.

If yj = B-1aj  is neither less than nor equal to 0  Then go to step 3

3) Find the new extreme point by changing the current basis. Repeat step 1.

Therefore, as may be seen, in the Simplex Algorithm control rules appear mainly in the second
step as

- The non positivity of the vector cBB-1R - cR   could be meant in a soft sense,

- The positivity of the component cBB-1aj - cj could be measured according to some membership
function, and

- The accomplishment of yj = B-1aj  ≤ 0, if this is viewed as a constraint, could  be fuzzified.

If the first possibility is considered, a new second step can be formulated,

2') Let x be an extreme point with basis B. Compute cBB-1R - cR. If

     ∀ j = 1, ..., n, cByj - cj <f 0, cj ∈  cR

Then stop.

Thus this condition is stated as a fuzzy constraint, meaning that the decision-maker can accept
violations in the accomplishment of the control rules, cByj - cj < 0, to obtain a near, and
therefore approximate, optimal solution instead of a full optimal one.

In the following, the above fuzzy rules, meant as termination criteria in the algorithms used in



practical realisations of DSS, will be illustrated here by means of a very well known problem:
the  Travelling Salesman Problem (TSP). TSP finds application in a variety of situations: postal
routes, tightening the nuts on some piece of machinery on assembly lines, etc. In short TSP is
addressed as follows: Let G be a directed graph in which the nodes represent cities and each
edge has assigned a positive cost (the distance between each two cities). If a route of G  is
defined as a directed cycle that includes every vertex in G, and the cost of a route is the sum of
the cost of the edges on the route, the TSP is to find a route of minimum cost.

We denote i = 1 the first city of the route and 2,3,...n the other cities, dij to distance between the
city i and the j one, the value of the variable  xij is 1 if j is the next city in the route to city i and
0 otherwise. If N = {1,2,...,n}, the mathematical formulation of the TSP is:
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In order to introduce fuzzy termination criteria in the exact algorithms of the TSP, we consider
that the value of a TSP optimal solution is not a crisp unknown value, but a vague value,
because in a great dimension TSP, for which the exact algorithms known need a lot of time to
obtain an optimal solution, the decision maker can be comfortable in having an almost optimal
solution instead of the very optimal one. In such a situation the optimal value can be seen as a
fuzzy set on [L0,U0] defined by a membership function as:
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where f(z)∈ [0,1] ∀ z∈ [L0,U0], is a not increasing continuous function, L0 a lower bound and U0

a upper bound of the optimal value of the TSP which shall be determined “a priori” as it will be
shown. As usual, this membership function shows that if the value z of a TSP route is greater
than U0 then is not allowed by the decision maker. A lower value to L0 can be a good solution
and values between L0 and U0 are admissible, but the level of admission will be increasing
when z  decreases. Obviously, the highest level of admission is obtained when z is equal to L0.

If the decision maker accept a not optimal solution with a membership degree not lower than α
(0<α <1), a termination criterion is:

µ(z) ≥α       or     z ≤  f -1(α )                                            (1)

The values of L0, U0  and the function f must be the correct ones in order to provide the
expected results by the decision maker. Unsuitable values of L0, U0 can produce solutions with
great errors. Equally, an incorrect function f can cancel out the flexibility. From  [13, 17] it
follows that in such situations a good option is to use a concave function in the definition of the
membership function, concretely a function as
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for which the bounds L0 and U0 can be computed by suitable efficient existing algorithms.

In order to illustrate the use of fuzzy termination criteria in the TSP,  the well known algorithm
by Little et al. [7], that here is denoted LMSK algorithm in  short and that is specially designed
for solving TSP, has been considered.

2.1 LMSK algorithm.

This is a branch and bound algorithm that uses relaxation of TSP as a matching problem
denoted by PA (TSP). The algorithm starts by solving the PA (TSP) by the Hungarian Method;
if the obtained solution not possess sub-routes then it is an optimal solution of the TSP. Else
the algorithm proceeds to branch. Each iteration, one chooses the most recent sub-problem
TSPk among the unsolved ones. If the optimal value is lower than the best current value, then it
is saved as the best current value, or alternatively one branches according to this problem has
sub-routes or do not. If the optimal value is equal to or greater than the best current value, then
one rejects the sub-problem and start another iteration. The rule for branching consists in
choosing a variable xij  and to obtain two sub-problems by assigning 0 and 1 values to the
selected variable. The process terminates when do not exists any unsolved sub-problem.

In a TSPk (node k) sub-problem, as a consequence of the above branching, there are variables
xij with fixed values (0 or 1). In graph terms, there are an (i,j) edge included or not in the route.
We denote I the included edge set and E the excluded edge set. Then, TSPk can be describe as:
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furthermore dij are the coefficients of the matrix of reduced distance of previous node, that is to
say, the matrix that rest after to obtain the optimum assignation in the previous node.

This sub-problem is solved by using the Hungarian Method. If the obtained solution has sub-
routes one proceeds to branch. A rule for branching is to choose a variable xrs where r∈S and
s∈T, and to make two nodes assigning value 1 or 0 each one. Little et al [7] suggest to select a
variable xrs with value 0 if this variable has the maximal potential of increasing in the objective
function of the sub-problem. In order to make it, let

{ } TjSidij ∈∈ ,

be the reduced cost of the optimum solution of the sub-problem. Then, for each edge (i,j), i∈S,
j∈T with reduced cost 0, we compute:

{ } { }}{/}{/ iShdminjThdminp hjikij −∈+−∈=

which is the minimum amount to increase the optimum value of the assignation to the
subproblem, if the chosen variable is fixed to 0. Therefore we can  choose xrs such that:

{ }0,,/ =∈∈= ijijrs dTjSipmaxp                                                   (3)



when the variable of branching xrs is chosen, all the new nodes can be obtained making xrs =1
and xrs =0. In the first new node, I has the edge (r,s) as new element, and in the second new
node, E has the edge (r,s) as new element.

2.2 Steps of LMSK algorithm

Step 1: [Starting] Let U = ∞  (best bound and real value) and L = {TSP} (subproblem list).

Step 2: [Selecting a sub-problem] If L = Φ   then one terminates the process, because the route
associated to U is an optimal one (if U= ∞  , the TSP has not solution).

If L ≠ Φ , one chooses the more recent sub-problem TSPi , and one removes it from the
list L. Go to step 3.

Step 3: [Upper bound determination] Solve PA(TSPi) by means of the Hungarian Method. Let
Zi be the obtained value.

If Zi ≥ U, go to step 2.

If Zi <U and the solution is a route for TSP (there are not subroutes) then make U = Zi.

If Zi <U and the solution is not a route for TSP (there are subroutes) go to step 4.

Step 4: [Branching] Choose xrs according to (3) and  generate two news sub-problems TSPi1

and TSPi2 by fixing xrs = 0 and xrs = 1. Let L = L∪ {TSPi1,TSPi2 }.

Go to step 2.

Remark:  Note that the termination criterion of this algorithm is L ≠ Φ .

2.3 Fuzzy termination criteria in the LMSK algorithm

To introduce a fuzzy termination criterion in the LMSK algorithm, we make a change at the
starting step in order to determinate the bounds L0 and U0 .  L0 is computed by using the method
proposed in [12], and the upper bound U0 is computed by means of  the process described in
[10]. In the same starting step, the decision maker will choose and fix α (the lowest level of
admission). Finally, at step 2 one must  include the fuzzy termination condition (1). Therefore
the following new algorithm is obtained:

Step 1: [Starting] Let   U = ∞  (best bound and real value) and L={TSP} (subproblem list).
Solve by means of the Hungarian Method PA(TSP). If optimum matching is a route of
TSP go to step 2. Else, go to 1’.

Step 1’: Find L0 and U0, then make U = U0 (best real bound) and go to step1’’;

Step 1’’: Fix α  (0<α≤1). If 0<α<1 let z0 = f-1(α) (bound for the admissible solution, where f is
as in (2)). If L ≠ Φ  go to step 2. Else, go to step 4.

If α = 1 (the decision maker do not want to improve an admissible solution), let L = Φ
and go to step 2.

Step 2: [Selecting a sub-problem] If L = Φ  or U ≤ z0  stop the process, as the associated route
with U is admissible; if L ≠ Φ   go to step 1’’. Otherwise stop.

If L ≠ Φ    and U > z0 , select the more recent problem TSPi , remove it from the list L
and go to step 3.

Step 3: [Upper bound determination] Solve PA(TSPi) by means of the Hungarian Method. Let
Zi be the obtained value.

If Zi  ≥ U, go to step 2.



If Zi <U and the solution is a route for TSP (there are not subroutes) then let U = Zi.

If Zi <U and the solution is not a route for TSP (there are subroutes) go to step 4.

Step 4: [Branching] Choose xrs according to (3) and generate two news sub-problems TSPi1 and
TSPi2 by fixing xrs=0 and xrs=1. Take L = L∪ {TSPi1,TSPi2}.

Go to step 2.

The introduction of the fuzzy termination criterion on the algorithm has made it more flexible.
Now, the decision maker can control the iterations because at step 1’’ he can  introduce little
values for  α and to increase them if he want to improve the admissible solution. Consequently
the decision maker will take into account the time used for  obtaining admissible solutions.

For the sake of illustration, let consider finally the following TSP of 10 cities, with a distance
matrix given by:
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We consider the diagonal elements of the matrix and the distances of excluded edges in the
iterations with a value M =10 x (max dij). Then, dii = M and dij = M if the edge (i,j) is excluded
of a possible route. Then solving the problem with the exact algorithm LMSK, one obtains the
optimal route “1→  2→  9→  6→  5→  10→  4 → 8→  7→  3→  1” with a total distance z = 218,
after solving 15 sub-problems (original problem included).

On the other hand when using the LMSK algorithm with a fuzzy termination criterion, a
function f as (2), n = 2, and bounds  L0 = 208 and U0 = 308 (at the starting step 1’), the
admissible solutions for the different values of  α is shown in the following table:

 α z0=f –1(α) Admissible route Admissible value Sub-problems solved
(It.)

0.5

0.8

0.94

283

244

219.64

1-7-3-10-5-2-9-8-4-6-1

1-8-7-4-3-19-5-2-9-6-1

1-2-9-6-5-10-4-8-7-3-1

258

221

218

  8

10

14

Table: Admissible solutions for the example  (LMSK algorithm and fuzzy termination criteria)

One can observe that for α = 0.8, an admissible solution is obtained by solving only the 66% of
all the sub-problems than the classical algorithm solves. However, the admissible value
obtained is very close to the optimum. It is then evident that the saving in time is upper in
comparison with the difference between the admissible value and the optimum value.
Furthermore for α = 0.94 one obtains an admissible solution which is the exact one, and by
performing less iterations than the original classical algorithm. The more the number of cities
are in the TSP, the more these advantages are evident.



3  FANS: A Fuzzy Adaptive Neighborhood Search algorithm
Neighborhood based search algorithms, as Simulated Annealing, Tabu Search or Evolutionary
Programming, has been applied with success on combinatorial and numerical optimization
problems. Here we present the basic ideas of a Fuzzy Adaptive Neighborhood Search (FANS)
algorithm, whose main motivation is to provide an optimization tool where experts' knowledge
or “rules of thumb”' could be expressed and tested using fuzzy concepts and heuristic decision
rules, leading to an expressive and powerfull system. By means of a fuzzy valuation,
represented in FANS by fuzzy sets, a fuzzy measure of the generated solutions is obtained.
Fuzzy valuations may represent concepts like “Acceptability”, “Goodness”, etc. Thus a degree
of acceptability (goodness) is calculated for each solution and such degrees are used by FANS
at the decision stages. The use of schedulers enable FANS to modify its behaviour as a function
of the search state. In particular, the operator used to generate solutions is changed when the
search seems trapped, leading to an intermediate escaping mechanism. When this mechanism
fails, a classical restart operator is applied.

Being a heuristic, FANS needs some parameters and components to be defined. Suitable
component definitions and parameters, lead FANS to reflect the behaviour of traditional
techniques like Hill Climbing, Random Walks, etc. In [8, 9], we showed how FANS
outperformed a Genetic Algorithm (GA) and Simulated Annealing (SA) over a set of real
function minimization problems when the three algorithms were given a fixed amount of cost
function evaluations. In those problems the only restriction was the range available for each
variable, so it was easy to ensure that all the generated solutions were feasible. Here, we will
test FANS over Knapsack Problems (KP) with multiple restrictions in order to confirm its
potential as a general purpose optimization technique. In this case, infeasible solutions will
exist and the algorithm must deal with them in some way.

3.1 FANS components

FANS operation relies on four main components: an operator, to construct new solutions; a
fuzzy valuation, to qualify them; an operator scheduler, to adapt the operator's behaviour; and a
neighborhood scheduler, to generate and select a new solution.

Modification operator: We must provide an operator OP to produce new solutions s* from the
current one s. This operator has to ensure that all the points of the search space could be
reached and must be suitable of adaptation in some sense, for example providing tunnable
parameters to control its operation.

Each application of OP(s) must return a different solution si, meaning that some randomization
element must be present in the operator definition. When binary solutions are considered, a
typical modification operator is the bitFlipping one, which randomly changes k values (1's by
0' and vice versa). Higher values of k means very disruptive moves, while lower values leads to
less disruptive ones. Clearly k is a suitable parameter to be adjusted. If real valued solutions are
considered, any operator that changes the variables in some amount p within the available
range could be used. In this case p is the adjustable parameter.

Fuzzy Concepts: Recall that repeated applications of the operator OP  enable us to obtain a set
of solutions F(s) from a given one s.  The fuzzy concept must provide some kind of measure for
the solutions si∈F(s) with respect to s. So, given the current solution s we could think of how
similar are s and si , or how close they are, or even how different is si from s. In this way, we
will be able to provide some classification of the generated solutions. The fuzzy concepts
Similar, Close, Different, ... would be represented by appropriated membership functions µ and
FANS will deal with “degrees of membership”.



Operator Scheduler: This procedure encapsulates the strategy used for the adaptation of the
modification operator OP. Both elements are tightly coupled. The scheduler will be executed
when certain conditions are met. For example, when the search is trapped in a local minimum,
or no progress has been done in certain number of iterations. The action to take will be the
adaptation of those tunnable parameters of the operator, and the type of adaptation could be
fixed or decided in terms of some running statistics like the current iteration number, the total
iterations available, the improvement ratio, or anything else. Whatever the election, the
scheduler must return a modified (in some sense) OP operator.

Neighborhood Scheduler: This procedure, using the current operator OP, the membership
function of the defined fuzzy concept µ and the current solution s, must return a neighborhood
solution. The neighborhood of a solution s is defined as follows:

N(s) = {s*| µ(s*) > 0}

where the solutions s* are obtained by repeated applications of OP(s). In other words, N(s) is
the set of solutions which verifies the used concept in any degree. In order to achieve this goal,
the scheduler contains 2 procedures: the generator, and the selector. As their names implies, the
first one, given the current solution s, the current operator OP and the membership function µ,
has to obtain solutions from N(s) sampling the search space with OP. The second procedure
must determine which q ∈  N(s) would be returned; for example “the best one”, or “anyone'', or
more complex rules as “if the number of iterations done is high, return the best one”. Several
situations could arise in the scheduler, for example when the generator could not obtain any
solution s*∈N(s). In such a case, the interaction between components must ensure that any of
the elements used by the generator changes. In this way, the generator would change its
behaviour leading to a possibly different result the next time it's executed.

In order to apply FANS to a particular problem, these components must be defined. As usual,
when more problem-dependant definitions are used, the better the performance. We decide to
use simple definitions in order to test the quality of the search strategy induced by FANS.
Below, we describe the definition proposed for each component of FANS in order to to deal
with the KP with multiple constraints

Modification Operator k-BitFlip: randomly chooses k positions and flips the associated bit
value. “Back mutation” is not allowed.

Fuzzy Valuation (Acceptable): the generated solutions will be qualified in terms of
“acceptability”, a concept reflecting the following idea: with a solution at hand, those
generated solutions improving the current cost, will have a higher degree of acceptability than
those with lower cost. Solutions diminishing the cost a little, will be considered “acceptable”
but with lower degree. Those solutions demeliorating to much the current cost will not be
considered as acceptable. So, given an objective function f , the current solution s, q a neighbor
solution, and β  the limit for what is considered as acceptable, the following definition
comprise those ideas:

µ(q,s,β) = 0 if  f(q) < β
               (f(q) - β)/(f(s) - β) if β ≤ f(q) ≤ f(s)

1 if  f(q) > f(s)

Here we will use β = f(s)·(1-γ), γ∈[0,1], and will set γ = 0.05

Operator Scheduler: the k-BitFlip operator will be adapted trough changes on the k
parameter. The used scheme is rather simple: being kt the actual value, then kt+1 will be a
random integer value in [1; 2 kt]. Also, if kt+1 > top = n/10 , then kt+1 = top.



Neighborhood Scheduler: given the cost function f , the operator OP, the fuzzy valuation and
the current solution s, we define the operational neighborhood of s as

N(s) = {x*| x* = OP(s)}

and the “semantic” neighborhood of s as

N*(s) = {x* | µ(f(x*)) > λ; x* ∈  N(s)}

Taking into account both definitions, we provide two neigborhood schedulers.

Quality Based Grouping Scheme R|S|T: it tries to generate R “Acceptable” neighborhood
solutions in maxTrials trials, then those solutions are grouped into S sets on the basis of their
acceptability degree, and finally T solutions are returned [9]. We use a 5|3|1 scheme with
maxTrials = 12. The S = 3 sets or clusters are represented by overlapped triangular membership
functions with boundaries adjusted to fit the range [λ; 1:0], being λ = 0.99 the minimun level of
acceptability required. The sets represents the terms Low, Medium, High for the linguistic
variable “Quality”. At the end of the process, T = 1 solution must be returned. Here, we choose
to return any solution of the highest quality available.

First Found Scheme: at most maxT rials = 12 trials are available to obtain a solution  x* in
N*(s). The first one found is returned.

Fig. 1 shows FANS pseudo code. The iterations end when some external condition holds. The
neigborhood scheduler NS is called at the beginning of each iteration, with parameters: current
solution S_cur ; fuzzy valuation µ() and modification operator OP. Two situations may ocurr:
an “acceptable” neigborhood solution S_new was found or not. In the first case S_new is taken
as the current solution and µ() parameters are adapted. In this way, we are varying our notion
of “Acceptability” as a function of the context.

If NS could not return any acceptable solution, an exception condition (OK = false) is raised.
No solutions were acceptable in the neighborhood induced by the operator. In this case, the
operator scheduler OS is executed, returning a modified version of OP. The next time NS will
have a modified operator to search for solutions. The trappedCondition() exception is raised
when Top iterations were done without improvements in the best solution found. In this case,
the doRestart() procedure is executed applying a perturbation operation over the current
solution: 1/3 of randomly chosen variables in one are set to zero. Then, the cost of the current
solution is reevaluated and µ() is adapted. Then the process is restarted.

                                Procedure FANS
Begin

While ( not-finalization ) Do
NS->Run(OP;µ();Scur;Snew; ok);
If (ok) Then

Scur = Snew;
adaptFuzzyVal(µ();Scur;

Else
OS->Run(Oper);

EndIf
If (trappedCondition()) Then

doRestart();
EndIf

EndWhile
End.

                                                       Figure 1: FANS Pseudocode



 3.2 Algorithms solving the Knapsack Problem with multiple constraints

Among all the large variety of possible KP which can be addressed, we will focus here on the
KP with multiple constraints, which can be mathematically formulated as follows

Max {∑ i=1..n pi·xi / ∑ i=1..nwij·xi  ≤ cj; j = 1...m}

Where n is the number of items, m is the number of restrictions, xi ∈{0,1} indicates if the i-th
item is included or not in the knapsack, pi is the profit associated with the i-th item, and  finally
wij ∈  [0,..,r] is the weight of i-th item with respect to j-th constraint (∑ i=1..n wij > Cj, wij < C j).

For our experiments we select 9 instances from a standard set of 55 problems available from
[1]. The instances are named pb5, pb7, Weing1, Weing3, Weing7, Weish10, Weish14,
Weish18, Weish27. The number of variables range from 20 to 105 with 2 to 30 restrictions.

To solve these problems and test the performance of the heuristic presented, we compare
FANS with two other heuristics: A Simulated Annealing (SA) algorithm and a Genetic
Algorithm (GA). Knapsack solutions are represented by binary vectors X, where position i
represents the variable xi. This representation is used in FANS, SA and GA. In our
experiments, infeasible solutions will not be taken into account and they will be discarded. No
reparation procedure will be used. Initial solutions for each method contains just a unique
position in 1.

The GA used may be regarded as “traditional”. Mutation is applied to all individuals with
certain probability. As mutation operator, the k-BitFlip operator is used with k = 2. If the
solution obtained after mutation is infeasible, it is discarded and at most four more trials are
done to obtain a feasible one. If no feasible solution was obtained, the original one is kept.

As crossover operator, two classical ones are implemented: 1 point and uniform crossover. In
this way we obtain 2 algorithms: GAOP y GAUX respectively. Elitism is also used in both
versions. Other parameters are population size PopSize = 100; crossover and mutation
probabilities P(xover) = 0:8; P(mut) = 0:2, and Tournament Selection with tournament size q =
2 within a ( µ = 50 +  λ = 75) scheme.

Our implementation of SA is simple and follows the guidelines presented in [4]. The k-BitFlip
operator is also used with k = 2. The initial temperature was T0  = 5 and proportional cooling is
used with Tk+1 =  Tk ⋅α with α = 0.9. Temperature is adapted when 15 neighbors were accepted,
or when 2⋅n neighbors were generated, being n the dimension of the problem. The values for
the parameters were empirically determined after a reduced set of experiments.

Now, in order to analyze the performance of FANS, we conduct a set of experiments and made
comparisons among the following five algorithms: FRST, is FANS with scheduler R|S|T ; FFF ,
is FANS with scheduler FirstFound; GAUX, is the GA with uniform crossover; GAOP, is the
GA with one-point crossover; and SA, the Simulated Annealing implementation. We want to
compare the performances of the algorithms under none or minimal knowledge of the problem
(reflected by the use of very simple operators), and when they are given a fixed number of
resources (i.e cost function evaluations and number of generated solutions). Thus  we can
assume the results are consequence of the search strategy and not of additional knowledge.

For each problem and algorithm 30 runs were made; each one ending when maxEvals = 15000
cost function evaluations were done or when maxEvals ⋅ 4 solutions were generated. This limit
is needed because only feasible solutions are evaluated. The results are analyzed in terms of the
error for each problem and globally over the whole test set. The first results are presented on
Table 1, where part (a) shows the mean of the errors over 30 runs for each algorithm on each
problem. The error is calculated as:



error = 100* ((Optimum - Obtained Value)/(Optimum))

The Table shows that both versions of FANS achieved the lower values, except for problems
Weing3, Weing7 y Weish27. \Sa achieved the better value on Weing7 and GAux did it on the
other two problems. On part (b) of Table 1, an × indicate if the algorithm on the column
reached the optimum of the problem on the row in any of the 30 runs. We can see that FRST ,
FFF and GAUX obtained the optimum on 6 of 9 problems, while GAOP on 5 of 9 and SA just
in 1 of 9 (this optimum was reached by all algorithms).

PROBLEM FRST FGRED SA GAOP GAUX

Pb5 1.04 .92 6.52 3.37 3.07

Pb7 .94 1.19 4.13 3.83 4.23

weing1 .20 .19 8.07 .92 1.37

weing3 1.54 1.32 22.04 1.85 .91

weing7 .50 .51 .48 1.13 .93

weish10 .27 .14 1.22 1.34 1.18

weish14 .85 .78 1.93 1.85 .91

weish18 .73 .71 1.39 .95 .89

weish27 3.02 2.89 2.85 3.21 1.18

Total 1.01 .96 5.40 2.05 1.63

Table 1 (a)

It is hard to determine why FANS failed to achieve the optimums for those problems, because
it is not clear what makes an instance easy or hard. One aspect is the correlation between
profits and weights, which is well stablished for classical KP but not for multiple restrictions
KP. Other elements are needed but this discussion is out of the aim of this work.

The last row  in Table 1 (b), indicates the number of executions ending at the optimum for a
total of 9⋅30=270 runs. FRST and FFF achieves the higher values followed by GAUX. SA and
GAOP are quite ineffective from this point of view.

PROBLEM FRST FGRED SA GAOP GAUX

Pb5 X X

Pb5 X X

Pb7 X X

Pb7 X X

weing1 X X X X

weing1 X X X X

weing3 X X

weing3 X X

weing7

weing7

weish10 X X X X X



weish14 X X X X

weish18 X X X X

weish18 X X X X

weish27 X

weish27 X

Total 39 39 9 17 31

Total 39 39 9 17 31

Table 1 (b)

To conclude, taking the mean and variance of the errors over the whole set of problems

ALGOR Variance Mean

FRST 1.0024 1.0095

FGRED 1.0244 .9606

SA 7.9356 5.4027

GAOP 1.9580 2.0492

GAUX 1.8684 1.6310

it becomes patent that both version of FANS achieved the lowest values, followed by GAUX.
The mean error in GAUX y GAOP was almost twice of that in FRST and FFF; and SA values
were 5 times higher.

In order to confirm if mean error differences were of statistical significance, t-tests were done
with a confidence level of 95%. The results enabled us to confirm that both versions of FANS
outperformed GAUX, GAOP and SA. Both GA outperformed SA, and no significative
differences were found among them, in spite of the apparent superiority of GAUX (A + sign at
(i,j) means algorithm i was better than j with confidence level of 95\%. A - sign stands for i
worst than j and = stands for no significative differences):

FRST FGRED GAUX GAOP SA
FRST = + + +
FGRED = + + +
GAUX - - = +
GAOP - - = +
SA - - - -
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Conclusions
In this work we gained evidence about the suitability of fuzy sets based heuristics for solving
difficult optimization problems.

Although the main objective was not to develop tools to deal with specific (travelling or
knapsack) problems, but to use these problems to learn about fuzzy sets based heuristics



behaviour, the results show the good performace of these algorithms over these problems in
spite of the simple component definitions used.

Experiments are being done in order to apply these heuristic algorithms to problems arising in
computational molecular biology, where the operator's knowledge is very important to assess
the quality of the results.
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