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Abstract 

Most real-world databases contain some amount of inaccurate data.  Reliability of critical 
attributes can be evaluated from the values of other attributes in the same data table.  This 
paper presents a new fuzzy-based measure of data reliability in continuous attributes.  We 

partition the relational schema of a database into a subset of input (predicting) and a subset of 
target (dependent) attributes.  A data mining model, called information-theoretic 

connectionist network, is constructed for predicting the values of a continuous target 
attribute.  The network calculates the degree of reliability of the actual target values in each 
record by using their distance from the predicted values.  The approach is demonstrated on 

the voting data from the 2000 Presidential Elections in the US. 
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1 Introduction 

Modern database systems are designed to store accurate and reliable data only.  However, 
the assumption of zero defect data (ZDD) is far from being true in most real-world 
databases, especially when their data comes from multiple sources. The issue of data 
reliability has been in the focus of the recent controversy regarding the results of the Year 
2000 presidential elections in the State of Florida.  After the elections, the leaders of the 
Democratic Party questioned the accuracy of the official voting results in certain Florida 
counties, based on the demographic characteristics of the voters in those counties.  Their 
suspicions have led to a manual re-count of the votes, which was aimed at improving the 
reliability of the results. Though the accuracy of the punch card counting machines, used 
in some counties, was known to be limited, a complete manual re-count of all Florida 
votes was not feasible within a several weeks time frame.  Eventually, the courts stopped 
the manual re-count process and Mr. George W. Bush was declared as the new President 
of the United States. 

In small databases the users have enough time to check manually every record 
“suspected” of poor data quality and correct data, if necessary.  In a large database, like 
the data on Florida voting results, this approach is certainly impractical.  The task of 
assuring data reliability and data quality, known as “data cleaning”, becomes even more 
acute in rapidly emerging Data Warehouses.  Thus, there is a strong need for an efficient 
automated tool, capable of detecting, filtering, representing and analyzing poor quality 
data in large databases. 

In our previous work (see [18] - [20]), we have introduced an information-theoretic 
fuzzy method for evaluating reliability of discrete (nominal) attributes.  Our methodology 
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for data quality assurance includes three main stages: modification of the database schema, 
induction of a data mining model (information-theoretic network), and using the 
constructed network to calculate reliability degrees of attribute values.  In this paper, we 
present a new fuzzy-based measure for evaluating the reliability of continuous attributes 
and demonstrate it on a set of real voting data from the US presidential elections. 

Our paper is organized as follows.  In Section 2 we present an overview of existing 
approaches to various aspects of data quality and data reliability. Section 3 briefly 
describes the algorithm for building an information-theoretic connectionist network from 
relational data. In Section 4, we present the fuzzy-based approach to evaluating data 
reliability of continuous attributes. In Section 5 we apply the info-fuzzy methodology 
presented in Sections 3 and 4 to a set of real voting data.  Section 6 concludes the paper 
with summarizing the benefits of our approach to data reliability and representing a 
number of issues for the future research.  

 

2 Data Quality and Data Reliability 

As indicated by Wang et al. [32], data reliability is one of data quality dimensions.  
Other data quality dimensions include ([31] - [33]): accuracy, timeliness, relevance, 
completeness, consistency, precision, etc.  Various definitions of these and other 
dimensions can be found in [33].  Ahituv et al. [1] refer to accuracy and relevance as 
content attributes  of an information system. According to Wand and Wang [31], the 
reliability “indicates whether the data can be counted on to convey the right information”. 
Unreliable (deficient) data represents an inconformity between the state of the information 
system and the state of the real-world system. The process of mapping a real-world state to 
a wrong state in an information system is termed by [31] as “garbling”. Two cases of 
garbling are considered: the mapping to a meaningless state and the mapping to a 
meaningful, but wrong state.  In the first case the user knows that the data is unreliable, 
while in the second case he relies upon an incorrect data. Wand and Wang suggest to solve 
the garbling problem by adding data entry controls, like check digits and control totals, 
methods which are not applicable to qualitative data.  The paper follows a “Boolean” 
approach to data reliability: the information system states are assumed to be either correct 
or incorrect.  No “medium” degree of reliability is provided. 

An attribute-based approach to data quality is introduced by Wang et al. in [33].  It is 
based on the entity-relationship (ER) model (see [13]) and assumes that some attributes 
(called quality indicators) provide objective information (metadata) about data quality of 
other attributes. The data quality is expressed in terms of quality parameters (e.g., 
believability, reliability, and timeliness).  Thus, if some sources are less reliable than the 
others, an attribute data source may be an indicator of data reliability.  Each quality 
parameter has one or more quality indicators attached to it via quality keys. A quality 
indicator may have quality indicators of its own, leading easily to an exponential total 
number of quality indicators. Wang et al. [33] suggest integration of quality indicators, to 
eliminate redundancy and inconsistency, but no methodological approach to this problem 
(crucial for dimensionality reduction) is presented. 

An extended database, storing quality indicators along with data, is defined as a quality 
database. The quality indicator values are stored in quality indicator relations. The quality 
database is strictly deterministic: once the values of quality indicators are given, the values 



  3 

of quality parameters are uniquely defined by the database structure.  The values of quality 
parameters are often qualitative and subjective (like “highly reliable” vs. “unreliable”). 
Wang et al. [33] warn that quality parameters and quality indicators are strongly user-
dependent and application-dependent.   The database structure described by [33] enables 
an experienced user to infer manually from values of quality indicators about the quality 
of relation attributes, but their work provides no method for automated evaluation of data 
quality in large databases. 

Kandel et al. [11] mention unreliable information as one of sources of data uncertainty, 
other sources including fuzziness of human concepts, incomplete data, contradicting 
sources of information, and partial matching between facts and events.  According to 
Kandel et al. (1996), the main drawback of the probabilistic approaches to uncertainty 
(e.g., the Bayesian approach) is their limited ability to represent human reasoning, since 
humans are not Bayesian when reasoning under uncertainty. 

Kurutach [14] discusses three types of data imperfection in databases: vagueness, or 
fuzziness (the attribute value is given, but its meaning is not well-defined), imprecision 
(the attribute value is given as a set of possible items), and uncertainty (the attribute value 
is given along with its degree of confidence).  All these types of imperfection are defined 
by users themselves during the data entry process.  The author suggests a unified 
approach, based on fuzzy set theory, to incorporating these aspects of imperfection in an 
extended relational database containing, primarily, discretely-valued, qualitative data.  In 
addition to imprecision and uncertainty, Motro [22] defines a third kind of imperfect data: 
erroneous information.  Database information is erroneous, when it is different from the 
true information.  Motro  [22] follows the binary approach to errors: both “small” and 
“large” errors in a database should not be tolerated.  He also mentions inconsistency as 
one of the important kinds of erroneous information. 

Since, in a general case, data reliability is a linguistic variable (the data can be 
considered “very reliable”, “not so reliable”, “quite unreliable”, etc.), the models of fuzzy 
databases seem to be helpful for treating reliability of database attributes.  As indicated by 
Zemankova and Kandel [35], the main problem of fuzzy databases is to propagate the 
level of uncertainty associated with the data (reliability degree in our case) to the level of 
uncertainty associated with answers or conclusions based on the data.  The fuzzy relational 
algebra proposed by Klir and Yuan [12] enables to check similarity between values of 
fuzzy attributes by using a similarity relation matrix and a pre-defined threshold level of 
minimum acceptable similarity degree.  

Zemankova and Kandel [35] and Kandel [10] propose a Fuzzy Relational Data-Base 
(FRDB) model which enables to evaluate fuzzy queries from relational databases.  The 
attribute values in  the FRDB can represent membership or possibility distributions 
defined on the unit interval [0,1].  According to this model, a single value of a 
membership distribution can be used as a value of a fuzzy attribute.  Another model of 
fuzzy querying from regular relational databases (called SQLf) is presented by Bosc and 
Pivert [2].  The main purpose of this model is to define imprecise answers based on 
precise data and on fuzzy conditions (which contain fuzzy predicates and fuzzy 
quantifiers). 

The Fuzzy Data model developed by Takahashi [29] assumes that some nonkey 
attributes may have values defined by fuzzy predicates (e.g., “very reliable”).  All key 
attributes and some other attributes are assumed to have nonfuzzy values only.  Any tuple 
in Takahashi data model has a truth value z defined over the unit interval [0,1].  The value 
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of z is interpreted as a degree to which the tuple is true, with two special cases: z = 0 when 
the tuple is completely false and z = 1 when the tuple is completely true.  This approach 
treats a tuple as a set of attribute values, all having the same truth-value.  The case of 
different truth-values associated with values of different attributes in the same tuple is not 
covered by the model of [29].  A similar idea of associating a single truth value (a weight) 
with each tuple is described by Petri [25].  Petri terms such tuples as weighted tuples and 
defines their weight as a membership degree expressing the extent to which a tuple 
belongs to a fuzzy relation.  Three possible meanings of tuple weights are proposed.  One 
of them is “the certainty of information stored in the tuple”, i.e. the reliability of all tuple 
attributes.  The concept of reliability degree associated with every column in a fuzzy 
spreadsheet table is used by [23].  According to their definition, the degree of reliability 
can take any continuous value between 0 and 1, but no explicit interpretation of this 
variable is provided. 

All the above-mentioned models assume that both crisp and fuzzy quality dimensions 
of database attributes are available from the database users.  Obviously, this assumption 
may not be realistic for large and dynamically changing databases. Consequently, there is 
a need for methods that perform automated assessment of data quality. An information 
theoretic approach to automated data cleaning is presented by Guyon et al. [8].  The paper 
assumes that erroneous (“garbage”) data has a high information gain.  The information 
gain is defined by [8] as a self-information (logarithm of probability) of predicting the 
correct data value. This means that the most “surprising” patterns (having the lowest 
probability to be predicted correctly) are suspicious to be unreliable. The authors propose 
a computer-aided cleaning method where a human operator must check only those patterns 
that have the highest information gain and remove from the database patterns, which are 
truly corrupted, while keeping all the rest.  The prediction itself is performed in [8] by 
using a neural network trained with a “cross-entropy” cost function.  One can easily accept 
the approach of [8] that values having lower probability are more likely to be erroneous.  
However, the values having the same probability (and, accordingly, the same information 
gain) cannot be treated alike in different databases.  Reliability may also depend on the 
inherent distributions of database attributes and some other, user-related factors.  Thus, the 
approach of [8] should be enhanced to cope with real-world problems of data quality. 

In [19], we have presented a fuzzy-based approach to automated evaluation of data 
reliability.  The method of [19] is aimed at detecting unreliable nominal data by 
integrating objective (information-theoretic) and subjective (user-specific) aspects of data 
quality.  In this paper, we extend the method of [19] to handle partially reliable continuous 
attributes. 

3 Information-Theoretic Connectionist Networks 

Uncertainty is an inherent part of our life.  Delivery time of manufactured products is 
not constant, stock prices go up and down, and people vote according to their personal 
beliefs.   Most real-world phenomena cannot be predicted with perfect accuracy.  The 
reasons for that may include limited understanding of the true causes for a given 
phenomenon (e.g., detailed considerations of each specific voter), as well as missing and 
erroneous data (e.g., incomplete or inaccurate voting results).  

Data mining methods (see [4], [5], [17], [21], [26], and [27]) are aimed at reducing the 
amount of uncertainty, or gaining information, about the data.  More information means 
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higher prediction accuracy for future cases.  If a model is useless, it does not provide us 
with any new information and its prediction accuracy is not higher than just a random 
guess.  On the other hand, the maximum amount of information transferred by a model is 
limited: in the best case, we have an accurate prediction for every new case.  Intuitively, 
we need more information to predict a multi-valued outcome (e.g., percentage of votes for 
a certain candidate) than to predict a binary outcome (e.g., customer credibility). 

The above characteristics of the data mining problem resemble the communication 
task: predicting attributes can be seen as input messages and each value of the system 
output is an output message.  If we have a model with a perfect accuracy, each output 
value can be predicted correctly from the values of input attributes.  In terms of the 
Information Theory (see [3]), this means that the entropy of the output Y, given the input X 
is zero, i.e., the mutual information between Y and X is maximal. 

The information-theoretic approach to data mining (see [6], [7], [15], [16], [18], [19], 
and [20]) is a powerful methodology for inducing information patterns from large sets of 
imperfect data, since it uses meaningful network structure, called information-theoretic 
connectionist network.  The measures of information content, expressed by the network 
connection weights, include mutual information, conditional mutual information, and 
divergence. The connection weights can incorporate prior knowledge on probability 
distributions of database values.  Information-theoretic connectionist techniques have been 
successfully applied to the problems of extracting probabilistic rules from pairs of 
interdependent attributes [6], speech recognition [7], feature selection [15], and rule 
induction [16]. The procedure for constructing a multi-layer information-theoretic network 
is briefly described in the next sub-sections.  Complete details can be found in [20]. 

3.1 Extended Relational Model 

We use the following formal notation of the relational model [13]: 
• R = (A1,...,AN) - a schema of a relation (data table) containing N attributes  
• Di - the domain of an attribute Ai.   
• Vij- the value j in the domain Di.  
• tk[Ai] - value of an attribute Ai in a tuple k,  tk[Ai] ∈ Di. 

To build an information-theoretic network, we define the following types of attributes 
in a relation schema: 

1) A subset O⊂ R of target (“output”) attributes (|O| ≥1).  This is a subset of 
attributes, which can be predicted by the information-theoretic network.  If the 
values of these attributes are already available, we can evaluate their reliability 
by using the method of Section 4 below. 

2) A subset C⊂ R of candidate input attributes (|C| ≥ 1).  These attributes can be 
used to predict the values of target attributes.   

The following constraints are imposed on the above partition of the relation schema: 
1) ∅=∩ OC , i.e. the same attribute cannot be both a candidate input and a 

target. 
2) C∪ O⊆ R, i.e. some attributes are allowed to be neither candidate inputs nor 

targets. Usually, these will be the key (identifying) attributes. 
Now we proceed with describing the structure of a connectionist network designed to 

predict the values of target attributes.  
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3.2 Connectionist Network Structure 

An information-theoretic connectionist network has the following components: 
1) I - a subset of input (predicting) attributes selected by the network construction 

algorithm from the set C of candidate input attributes. 
2) |I|  - total number of hidden layers (levels) in a network.  Unlike the standard decision 

tree structure [27], where the nodes of the same tree level are independent of each 
other, all nodes of a given network layer are labeled by the same input attribute 
associated with that layer. Consequently, the number of network layers is equal to the 
number of input attributes. In layers associated with continuous attributes, an 
information network uses multiple splits, which are identical at all nodes of the 
corresponding layer. The first layer in the network (Layer 0) includes only the root 
node and is not associated with any input attribute.   

3) Ll - a subset of nodes z in a hidden layer l.  Each node represents an attribute-based test, 
similarly to a standard decision tree.  If a hidden layer l is associated with a nominal 
input attribute, each outgoing edge of a non-terminal node corresponds to an attribute 
distinct value.  For continuous features, the outgoing edges represent the intervals 
obtained from the discretization process.  If a node has no outgoing edges, it is called a 
terminal node.  Otherwise, it is connected by its edges to the nodes of the next layer, 
which correspond to the same subset of input values. 

4) K - a subset of target nodes representing distinct values in the domain of the target 
attribute.  For continuous target attributes (e.g., percentage of votes for certain 
candidate), the target nodes represent the user-specified intervals of the attribute range.   
The target layer does not exist in the standard decision-tree structure.  The connections 
between terminal nodes and the nodes of the target layer may be used for predicting the 
values of the target attributes and extracting information-theoretic rules (see [16]).  

3.3 The Network Construction Procedure 

The network construction algorithm starts with defining the target layer, where each 
node stands for a distinct target value, and the “root” node representing an empty set of 
input attributes. The connections between the root node and the target nodes represent 
unconditional  (prior) probabilities of the target values.  The network is built only in one 
direction (top-down).  After the construction process is stopped, there is no bottom-up 
post-pruning of the network branches.   The process of pre-pruning the network is 
explained below 

A node is split on the values of an input attribute if it provides a statistically significant 
increase in the mutual information of the node and the target attribute. Mutual 
information, or information gain, is defined as a decrease in the conditional entropy of the 
target attribute (see [3]). If the tested attribute is nominal, the splits correspond to the 
attribute values.  Splits on continuous attributes represent thresholds, which maximize an 
increase in mutual information.  At each iteration, the algorithm re-computes the best 
threshold splits of continuously-valued candidate input attributes and chooses an attribute 
(either discrete, or continuous), which provides the maximum overall increase in mutual 
information across all nodes of the current final layer. 

The maximum increase in mutual information is tested for statistical significance by 
using the Likelihood-Ratio Test [28]. This is a general-purpose method for testing the null 
hypothesis H0 that two discrete random variables are statistically independent. If H0 is 
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rejected, a new hidden layer is added to the network and a new attribute is added to the set 
I of input attributes. The nodes of a new layer are defined for a Cartesian product of split 
nodes of the previous final layer and the values of a new input attribute.  According to the 
chain rule (see [3]), the mutual information between a set of input attributes and the target 
(defined as the overall decrease in the conditional entropy) is equal to the sum of drops in 
conditional entropy at all the layers.  If there is no candidate input attribute significantly 
decreasing the conditional entropy of the target attribute, no more layers are added and the 
network construction stops.   

The main steps of the construction procedure for a single target attribute are 
summarized in Table 1. If a data table contains several target attributes, a separate network 
is built, by using the same procedure, for each target attribute. Complete details are 
provided in [20]. 

Table 1 Network Construction Algorithm 

Input: The set of n training instances; the set C of candidate input attributes (discrete and 
continuous); the target (classification) attribute Ai; the minimum significance level 
sign for splitting a network node (default: sign = 0.1%). 

Output: A set I of selected input attributes and an information-theoretic network.  Each input 
attribute has a corresponding hidden layer in the network. 

Step 1 Initialize the information-theoretic network (single root node representing all records, 
no hidden layers, and a target layer for the values of the target attribute). 

Step 2 While the number of layers |I| < |C| (number of candidate input attributes) do 
Step 2.1 For each candidate input attribute Ai’ ∉ I do 
 If Ai’ is continuous then 

Return the best threshold splits of Ai’. 
Return the conditional mutual information cond_MIi’ between Ai’ and 
the target attribute Ai. 

End Do 
Step 2.2 Find the candidate input attribute Ai’* maximizing cond_MIi’ 
Step 2.3 If cond_MIi’* = 0, then 

End Do.   
Else  

Expand the network by a new hidden layer associated with the 
attribute Ai’, and add Ai’ to the set I of selected input attributes. 

Step 2.4 End Do 
Step 3 Return the set of selected input attributes I and the network structure 

 

3.4 Predicting Continuous Target Values 

Like in decision trees, a predicted target value is assigned to every terminal node of an 
information-theoretic network. Each record of a training set is associated with one and 
only one terminal node, which can be found by the procedure described in Table 2 below.  
The predicted value Prediz of a continuous target attribute Ai at a terminal node z is 
calculated as the expected value of Ai over all the training records associated with the node 
z. 
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Table 2 Associating Record with a Terminal Node 

Input: The set I of selected input attributes; the values of input attributes in a tuple (record) k; 
the information-theoretic network 

Output: The ID of a terminal node corresponding to the tuple k: Node_Fk 

Step 1 Initialize the current node ID: z = 0 
Step 2 Initialize the layer number: m = 0 
Step 3 If a node z is terminal, then go to Step 7   

Else, go to the next step 
Step 4 Increment the number of layers: m = m+1 
Step 5 Find the next hidden node z by following the edge corresponding to the value of the 

input attribute m in the tuple k 
Step 6 Go to Step 3 
Step 7 Return Node_Fk = z 
 

4 Evaluating Reliability of Target Attributes 

4.1 Fuzzy Approach to Data Reliability 

The main cause of having unreliable data in a database are the errors committed by an 
information source, which may be a human user, an automated measuring device, or just 
another database.  In the case of the Year 2000 elections in the State of Florida, the 
Democrats have argued that the votes were not counted properly.  The legal controversy 
was focused on the so-called “undervotes”, votes not tabulated by the counting machine 
due to apparent defects in the punch cards.  The claim of the Democrats was that the 
undervotes have biased the results in favor of their opponent, the Republican Candidate 
George W. Bush.  For example, they have questioned the voting results of Palm Beach 
County, which seemed particularly unreliable based on the demographic characteristics 
and the voting traditions of people in that specific county. 

An expert user examining a familiar database can estimate quickly, and with a high 
degree of confidence, the reliability of stored information.  He, or she, would define some 
records as “highly reliable”, “not so reliable”, “doubtful”, “absolutely unreliable”, etc.  
However, what is the exact definition of “data reliability”? 

The most common “crisp” approach to data reliability is associated with data validity:  
some attribute values are valid while others are not.  For example, if the valid range of a 
numeric attribute is [50,100], the value of 100.1 is considered invalid and will be rejected 
during the data entry process. This is similar to the statistical concept of confidence 
intervals: any observation outside the interval boundaries is rejected, which means that its 
statistical validity is zero. The limitations of this approach are obvious: a real validity 
range may have “soft” boundaries. 

It seems reasonable to define the reliability of an attribute value as a mean frequency 
(or probability) of that particular value, since values of low probability may be assumed 
less reliable than the most common values.  This is similar to the information gain 
approach of [8]: the most surprising patterns are suspicious as unreliable.  However, the 
information gain approach is not readily applicable to evaluating reliability of continuous 
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attributes, which can take an infinite number of distinct values, each having a very low 
probability of occurrence. 

Noisy data is not necessarily unreliable data, and vice versa.  In some areas, like the 
stock market, the data may be inherently noisy (having a high variance and a high 
entropy), because the real-world phenomenon, it represents, depends on many independent 
and dynamic, mostly unknown, factors.  Still, the source of noisy data may be completely 
reliable.  On the other hand, the information on a very stable phenomenon (having a low 
variance) may be corrupted during the data entry process. 

Statistical information, obtained from training data, is certainly not sufficient for 
distinguishing between reliable and unreliable values. People use their intuition, 
background knowledge, and short-time memory, rather than any probabilistic criteria, for 
detecting lowly reliable data.  Moreover, as indicated by Kandel et al [10], the 
probabilistic approach seems to be against the nature of human reasoning.  Thus, we turn 
to the fuzzy set theory, which is a well-known approach to catching different aspects of 
human perception and making use of available prior knowledge.   

The fuzzy set theory provides a mathematical tool for representing imprecise, 
subjective knowledge: the fuzzy membership functions. These functions are used for 
mapping precise values of numeric variables to vague terms like “low”, high”, “reliable”, 
etc.  The form of a specific membership function can be adjusted by a set of parameters.  
For example, a triangular membership function is defined by its prototype, minimum, and 
maximum values.   For modeling human perception of reliability, the non-linear, sigmoid 
function seems more appropriate, since more probable values are usually perceived as 
more reliable, though all lowly reliable values are considered unreliable to nearly the same 
degree.  The shape of this membership function depends on user perception of unexpected 
data, ranging from a “step function” (the crisp approach: only values in a specific range 
are reliable) to a continuous membership grade, giving a non-zero reliability degree even 
to very distant and unexpected values. 

Thus, adopting the fuzzy logic theory and looking at the reliability degree as a fuzzy 
measure seems an appropriate approach to automating the human perception of data 
reliability.  In [19], we have proposed the following definition for the degree of data 
reliability: 

Definition 1.  Degree of Reliability of an attribute A in a tuple k is defined on a unit 
interval [0,1] as the degree of certainty that the value of attribute A stored in a tuple k is 
correct from user’s point of view. 

This definition is consistent with the definition of fuzzy measures in Klir and Yuan 
[12], since a set of correct attribute values can be viewed as a “crisp” set, and we are 
concerned with the certainty that a particular attribute belongs to that set.  It is also related 
to the fuzzy concept of “usuality” [34], where the fuzzy set of normal (or regular) values is 
considered the complement of a set of exceptions.  Two special cases of Definition 1 are: 
degree of reliability = 0 (the data is clearly erroneous) and degree of reliability = 1 (the 
data is completely reliable, which is the implicit assumption of most database systems). 

According to Definition 1, the degree of reliability is an attribute-dependent, tuple-
dependent and user-dependent measure.  It may vary for different attributes of the same 
tuple, for the same attribute in different tuples and for different users who have distinct 
views and purposes with respect to the same data. The subjectiveness of data reliability 
was best demonstrated in the 2000 election controversy.  While the Democrats complained 
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about the unreliable voting results, the same numbers seemed perfectly accurate to their 
political opponents.  

Data correctness does not imply precision.  It just means that if a user could know the 
exact state of the real-world system, his or her decision, based on that data, would not be 
changed.  After the 2000 elections, the real controversy was not about the exact number of 
votes for each candidate, which could be determined only by a tedious hand count.  Both 
parties were just eager to know who won the majority of votes in the State of Florida.    

4.2 Calculating Degree of Reliability 

After finding a predicted value of the target attribute Ai in a tuple k, we compute the 
degree of reliability of the actual target value by the following formula: 

ikd
t •αe+1

2
 = ][Rik    (1)   

Where 
α - exponential coefficient expressing the user perception of “unexpected” data.  Low 

values of α (about 1) make it a sigmoid function providing a gradual change of reliability 
degree between 0 and 1 within the attribute range.  Higher values of α (like 10 or 20) 
make it a step function assigning a reliability degree of zero to any value, which is 
different from the expected one.  

dik – a measure of distance between the actual value tk[Ai] and the predicted value 
Prediz* (z* = Node_Fk) of a target attribute Ai in a tuple k.  For continuous target attributes, 
the distance measure is calculated by: 

i

izik
ik Range

PredAtabs
d

)][( *−
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Where Rangei is the difference between the maximum and the minimum values of the 
attribute Ai.  According to Equation 2, dik is a linear measure of the difference between 
predicted and actual values, which is normalized to the [0, 1] range.  The reliability degree 
in Equation 1 is defined on the same range, but it represents the non-linearity of reliability 
perception as a function of data deviation from the expected value, which can be predicted 
from the information-theoretic network. 

In Figure 1, we show the reliability degree tk [Ri] as a function of the distance dik for 
two different values of α: α = 1 and α = 5.   Equation 1 satisfies the four requirements of a 
fuzzy measure (see [12], p. 178): boundary conditions, monotonicity, continuity from 
below and continuity from above.  The way to verify that is to look at the proximity to the 
predicted value as a reciprocal of the distance dik.  Then the reliability of the empty set 
(zero proximity, or infinite distance) is zero and the reliability of the complete set (infinite 
proximity, or zero distance) is one.  Reliability degree is a continuous monotonic function 
of proximity by its mathematical definition in Equation 1. 
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Figure 1 Reliability perceptions for different values of alpha 

5 Case Study: Palm Beach Election Data 

We have applied the information-theoretic fuzzy approach to the precinct-level voting 
data of the 2000 Presidential Election in Palm Beach County, Florida.  The results of the 
initial count and the demographic data on each precinct (including voter registration 
information) have been downloaded from the web page of Dr. Bruce E. Hansen [9] in 
November 2000. The original source for the data was Palm Beach County web page. The 
list of attributes in the Palm Beach dataset is presented in Table 3 below.  The raw data 
included absolute numbers (number of votes and number of voters).  We have normalized 
these numbers to the percentage out of the total number of votes / voters in the 
corresponding precinct. Since there is a strong dependency between the percentages of 
votes for each major candidate in the same precinct, we have arbitrarily chosen the 
percentage of votes for Bush as the target attribute.  After normalization, the values of the 
target attribute have been discretized to five intervals of approximately equal frequency. 
The Palm Beach dataset includes 14 candidate-input attributes, representing the percentage 
of registered voters in each party and the distribution of the voting population across 
several age groups.    The dataset has 494 records referring to all the voting precincts of 
Palm Beach County.  The 106 absentee precincts were excluded from the analysis due to 
the lack of demographic information. 
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Table 3 Palm Beach Dataset - List of Attributes 

Ser No Attribute Name Meaning Type Use in Network 
1 Precinct Precinct No Nominal None 
2 Bush Percentage of Votes Continuous Target 
3 Gore Percentage of Votes Continuous None 
4 Nader Percentage of Votes Continuous None 
5 Buchanan Percentage of Votes Continuous None 
6 Total_Vote Percentage of Votes Continuous None 
7 McCollum Percentage of Votes Continuous None 
8 Nelson Percentage of Votes Continuous None 
9 DEM_PTY Percentage of Registered Voters Continuous Candidate Input 
10 REP_PTY Percentage of Registered Voters Continuous Candidate Input 
11 OTHER_PTY Percentage of Registered Voters Continuous Candidate Input 
12 WHITE Percentage of Registered Voters Continuous Candidate Input 
13 BLACK Percentage of Registered Voters Continuous Candidate Input 
14 HISPANIC Percentage of Registered Voters Continuous Candidate Input 
15 OTHER_RACE Percentage of Registered Voters Continuous Candidate Input 
16 MALE Percentage of Registered Voters Continuous Candidate Input 
17 FEMALE Percentage of Registered Voters Continuous Candidate Input 
18 AGE_18-20 Percentage of Registered Voters Continuous Candidate Input 
19 AGE_21-29 Percentage of Registered Voters Continuous Candidate Input 
20 AGE_30-55 Percentage of Registered Voters Continuous Candidate Input 
21 AGE_56-64 Percentage of Registered Voters Continuous Candidate Input 
22 AGE_65&UP Percentage of Registered Voters Continuous Candidate Input 

 
The results of applying the information-theoretic procedure of sub-section 3.3 above to 

the Palm Beach Dataset are shown in Table 4.  Only three out of 14 candidate input 
attributes (REP_PTY, WHITE, and DEM_PTY) have been identified as statistically 
significant and included in the Information-Theoretic Network.  The column “Conditional 
MI” in Table 4 shows the net decrease in the entropy of the target attribute “Bush” due to 
adding each input attribute.  The first input attribute (REP_PTY) alone contributes nearly 
90% of the overall mutual information (1.435 bits).  This attribute is shown in bold.  The 
next two input attributes (WHITE and DEM_PTY) contribute about 8% and 2% 
respectively.  The first and the third input attributes are not surprising, since people tend to 
vote by their political association.  The input attribute No. 2 (White) is an indicator of 
some weak relationship between the racial origin of the voters and their votes.   

Table 4 Palm Beach Dataset - Summary of Results 

 Attribute Mutual Conditional Percentage Conditional 
Iteration Name Information MI Of MI Entropy 
0 REP_PTY 1.282 1.282 89.3% 1.04 
1 WHITE 1.4 0.118 8.2% 0.922 
2 DEM_PTY 1.435 0.035 2.4% 0.887 
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The constructed information-theoretic network has been used for evaluating the 
reliability of the target attribute (percentage of Bush votes in each precinct) by the fuzzy-
based method of Section 4 above.  We have calculated the degrees of reliability with α = 
1.00.  The resulting reliability degrees range between 0.617 and 1.000.  As indicated 
above, these reliability degrees refer to the initial voting results certified by the Palm 
Beach County after the Election Day.  During the following weeks, these results were in 
the center of a legal controversy until the US Supreme Court halted the vote recount on 
December 12, 2000.  However, the public was still interested to know the “ground truth”: 
who would be the actual winner of the Election in Florida, if the hand recount could be 
continued to its completion? For this reason, the Miami Herald and other media 
organizations have conducted a complete review of the “undervote” ballots in all Florida 
counties. The precinct-level results have been posted on the Miami Herald web site [30].  
To evaluate the usefulness of the data reliability calculations, we have examined the 
number of undervotes and the resulting change in the gap between the candidates for the 
precincts having the highest and the lowest reliability degrees (see Tables 5 and 6 below). 

The total number of undervotes in 20 precincts having the lowest reliability degrees 
(Table 5) is much larger than the number of undervotes in 20 precincts with highest 
reliability (Table 6). In other words, starting the count of undervotes in low reliability 
precincts would help to detect significant gaps, like the one in Precinct No. 191, as early 
as possible.  From a close look at the data of this precinct, one can see that the predicted 
percentage of Bush votes is high (51.5%) due to high percentages of Republicans and 
whites among the voters.  However, Mr. Bush has got only 37.2% of votes in this precinct.  
The low reliability of this result (0.838) has been confirmed by the count of undervotes, 
which has added the net amount of 28 votes to Bush.   
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Table 5 Low Reliability Precincts 

Precinct Dem Rep White 
Pred. 
Vote 

Act. 
Vote Reliability 

Under 
votes- 
Bush 

Under 
votes-
Gore 

Total 
Under 
votes 

Abs. 
Gain 

154C 4.12 84.02 97.94 0.515 0.866 0.617 4 0 4 4 
33 13.17 77.72 98.37 0.515 0.846 0.637 0 1 1 1 
154B 13.18 74.00 99.63 0.515 0.797 0.687 2 1 3 1 
167 15.25 69.50 97.34 0.515 0.761 0.724 1 0 1 1 
162I 8.07 78.60 97.54 0.515 0.758 0.727 0 0 0 0 
37 52.20 37.11 59.21 0.295 0.519 0.749 0 5 5 5 
122A 49.66 24.16 73.83 0.251 0.452 0.773 0 1 1 1 
001A 15.79 67.64 97.68 0.515 0.679 0.814 6 2 8 4 
36 46.83 38.03 78.52 0.404 0.562 0.820 0 0 0 0 
148E 37.43 45.99 76.47 0.515 0.667 0.827 0 1 1 1 
151 17.68 60.10 91.92 0.515 0.659 0.836 0 1 1 1 
163 30.87 48.23 94.86 0.515 0.372 0.837 0 1 1 1 
191 29.73 50.23 96.77 0.515 0.372 0.838 84 56 140 28 
121A 36.14 42.57 89.11 0.398 0.53 0.850 0 0 0 0 
158 35.34 48.54 98.25 0.515 0.394 0.863 2 1 3 1 
225 32.62 46.34 92.34 0.515 0.398 0.867 23 21 44 2 
90 17.31 64.24 96.24 0.515 0.631 0.867 1 1 2 0 
045A 33.19 46.36 93.51 0.515 0.399 0.868 5 11 16 6 
49 35.22 45.34 97.03 0.333 0.448 0.869 0 4 4 4 
093A 39.78 40.37 94.50 0.398 0.511 0.871 1 0 1 1 
7RWDO         236 62 
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Table 6 High Reliability Precincts 

 
Precinct Dem Rep White 

Pred. 
Vote 

Act. 
Vote Reliability 

Under 
votes- 
Bush 

Under 
votes-
Gore 

Total 
Under 
votes 

Abs. 
Gain 

156C 41.76 31.87 79.12 0.326 0.322 0.996 0 0 0 0 

38 82.69 8.20 2.96 0.072 0.069 0.997 0 0 0 0 

78 42.18 40.47 83.97 0.404 0.401 0.997 0 1 1 1 

110 43.39 39.31 91.10 0.398 0.4 0.997 6 9 15 3 

128G 43.26 33.80 80.26 0.326 0.328 0.997 1 1 2 0 

159J 36.03 40.24 84.63 0.404 0.406 0.997 2 1 3 1 

201 35.63 43.19 90.48 0.398 0.396 0.997 3 0 3 3 

003B 32.08 42.64 95.00 0.398 0.4 0.998 2 2 4 0 

114 68.21 19.44 26.54 0.253 0.255 0.998 0 2 2 2 

119 40.12 41.93 95.18 0.398 0.397 0.998 2 3 5 1 

120 45.00 27.50 84.53 0.251 0.249 0.998 0 3 3 3 

144E 44.19 34.99 75.35 0.326 0.324 0.998 33 43 76 10 

162A 80.42 9.88 98.19 0.072 0.074 0.998 0 2 2 2 

205E 41.51 35.82 92.55 0.28 0.279 0.998 4 1 5 3 

007A 31.71 60.98 95.12 0.515 0.515 0.999 0 0 0 0 

018J 50.45 33.32 93.99 0.28 0.281 0.999 1 7 8 6 

88 37.09 42.29 92.81 0.398 0.397 0.999 5 1 6 4 

115 45.53 41.30 93.12 0.398 0.397 0.999 4 5 9 1 

203 29.88 52.74 96.34 0.515 0.515 1.000 0 0 0 0 

Total         144 40 
 
 
 
 

6 Conclusion 

In this paper, we have presented a novel fuzzy-based approach to evaluating reliability 
of continuous attributes in a relational database.  The approach includes partition of a data 
table into input and target attributes, induction of a data mining model (information-
theoretic network) from a set of training data, and calculation of reliability degrees for 
target values based on their distance from the values predicted by the network. 

The proposed approach combines objective information about the data, which is 
represented by an information-theoretic network, with a subjective, user-specific 
perception of data quality.  In our case study, we have shown that the method can be an 
efficient tool for detection of inaccurate information in a real-world database.  

Related issues, to be further studied, include: integrating the method with other data 
mining models, evaluating reliability of input attributes, and detecting unreliable 
information in non-relational data. 
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