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Abstract: In previous papers, we used a two-component decomposition of the 

predicted signal consisting in genomic time series; namely low and fast varying 

components have been determined. In this paper, we improve the methodology of 
time series preprocessing for prediction.  The third component consists in the part of 
the original series which is not well predicted using the previous decomposition. The 

prediction using this new method of decomposition show significantly improved 
results. 

 

1. Introduction  

 

Time series prediction is a topic of interest in many applications, ranging from 

economy to medical science. Due to the importance of the topic, a large number of 

tools have been applied to prediction, including linear models and nonlinear 

models as neural networks (see [1] for a specific neural network used in the Santa 

Fe contest for prediction), hidden Markov models [2], and fuzzy systems [3]. In 

this paper, we present a method for improving prediction and we apply it to a 

neuro-fuzzy predictor used in predicting genomic time series. 

Genomic time series analysis is today a major topic in bioinformatics. This field 

can be defined as "the computational organisation and analysis of biological 

information" [4]. Bioinformatics and its tools are needed because of the huge 

amount of genomic data in the DNA sequences available today [5]. In the field of 

modern bioinformatics, the study of viruses has contributed to many of the 

methods, even though viruses are minute in genome size and complexity relative to 

their host genomes [5]. The need for methods to collate analyse genomic sequence 

data was imposed by complete viral genomes sequencing over the last 30 years [5].  

For a better understanding of host-virus interactions in a biologic system, we 

need an integration of the knowledge dispersed at various levels: virus specific 

information in databases, the literature and the 'walking' expert systems [5]. 

In the post genomic era, the next stage is the functional genomics - the study of 

genes, their resulting proteins, and the role played by the proteins in the body's 

biochemical processes [6]. 

In the functional genomics, for a sequence with unknown role, the searching of 

the similar sequences from those with known functions is performed. As a tool for 

identifying the similar sequences, we selected a neuro-fuzzy predictor. Based on an 

idea of the first author, a predictor which learned a specific sequence may 
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recognize a similar sequence and reject a foreign sequence  [7]. The decision of  

recognizing or rejecting could be made based on the small, respectively high 

prediction error values [8]. 

The time series prediction is applied in gene prediction. In [8-10], we tested a 

neuro-fuzzy system for time series predictions. The time series are obtained in [8-

10] by calculating the distances between successive occurrences of the same basis 

(A, C, G or T) in a genomic sequence. This methodology for prediction was first 

introduced for application to the prediction on natural language texts, namely for 
the distance between words [11]. 

In this paper, we improve the time series preprocessing methodology for 

prediction and we discuss some consequences of the results obtained on the 

genome of a virus. While in the previous papers we have decomposed the time 

series only in two components, in this paper we add a third component. This 

component could have the significance of a new part of the series, which was not 

well separated in our previous approach.  

The organization of the paper is as follow. The second section is devoted to the 

methodology. In the third section, results are presented. The last two sections 

contain a discussion and conclusions. 

 

2. Methodology 

 

The basic predictor structure used in this paper is depicted in Fig. 1. This is a 

one-step predictive system based on Sugeno fuzzy systems. For the slow and fast 

varying component, we used two such neuro-fuzzy predictors. The network 

architecture is a finite response predictor topology using Sugeno systems for the 

“weights” [12]. A number of twelve fuzzy systems act as “multipliers” of the 

delayed samples. The type-0 Sugeno fuzzy system with single input and single 

output was chosen for these cells. The input of fuzzy systems is characterized by 

seven Gauss type membership functions. 

 

 

Fig. 1 – The topology of transversal type filter with Sugeno fuzzy system network [12] 



We recall the input-output function of the neuro fuzzy predictor in Fig. 1, 

described by the equation (1), [10], [11].  
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 (1) 

In (1), M  denotes the number of Sugeno fuzzy systems, N  the number of 

membership functions for each Sugeno fuzzy system, kla  denotes the centers of the 

Gauss type membership functions, 
kl

β  are the value of the singletons and 
k

w are 

the  weights.   

The first stage is preprocessing the time series nA  and consists in a low pass 

filtering for obtaining the slow varying (trend) component, 
s

nA . The fast varying 

component, 
f

n
A , is determined by subtraction: 

  
f s

n n nA A A= −  (2) 

The low pass filtering consists in a moving average procedure. 

The first prediction error nε  is obtained from the original time series nA  using 

the predicted slow varying component 
s

nA%  and the predicted fast varying 

component 
f

nA% , namely nε is determined by subtraction: 

 s f

n n n nA A Aε = − −% %  (3) 

Fig. 2 - The general configuration of the predictor 
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Various predictor types can be chosen for the primary prediction error. In this 

study, we use a neuro-fuzzy predictor, similar with the predictor for the slow and 

fast varying component predictions. 

The rational for using this type of predictor is based on the complexity of the 

input-output function of this predictor, on its large number of parameters, and on 

the possibility to use various algorithms to train it, as explained below. 

The class of predictor is given by the input-output function of the predicting 

system. This function is a ratio with sums of exponentials at the nominator and the 
denominator. Therefore, the capabilities of this type of predictor are higher than for 

simple fuzzy logic systems with triangular or other piecewise input and output 

membership functions. Also, the characteristic function of this predictor is more 

intricate than the sum of sigmoidal functions, as in the case of a single layer 

perceptron. Compared to a MLP using sigmoidal neurons, which has the 

characteristic function essentially represented by composed sigmoidal functions, 

the characteristic function of this predictor is still more intricate, because it is a 

ratio of nonlinear functions. Compared to a MLP using Gaussian RBF neurons, 

which has the characteristic function represented essentially by composed Gaussian 

RBF functions, the characteristic function of this predictor is still more intricate, 

for similar reasons as above.  

Regarding the number of parameters involved, showing the adaptation 

flexibility of the predictor, this predictor is similar to the ones discussed above. 

Moreover, by adding belief degrees to the rules of the TSK-fuzzy systems 

representing the neurons, the number of parameters is easily increased. 

Regarding the possibility to use various learning algorithms, including gradient-

type algorithms, we notice that the gradient algorithms are easily adaptable to this 

predictor, in contrast to classic fuzzy systems with piecewise input and output 

membership functions, which do not accept classic gradient algorithms (because of 

the non-derivability of the function). 

 

3. Simulation Results 

 

The primary prediction error 
n

ε  for a time series which represents distances 

between successive occurrence of the A basis in HIV-1 genome, ENV gene [13], is 

shown in Fig. 3.  
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Fig. 3 - The primary prediction error 
n

ε   

 

Self-correlation for the primary prediction error
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Fig. 4 - The self-correlation function of the primary prediction error 
n

ε   

 

The self-correlation functions of the two errors (see Fig. 4 and Fig. 6) show 

very little correlation (< 0.05) meaning that the errors are mainly white noise – a 

fact confirmed by the histogram of the errors. 

The secondary prediction error is shown in Fig. 5. Trying to train a predictor for 

the primary error signal, we obtained three influence zones of the predictor 

outcome, marked with the arrows in Fig. 5. These influence zones correspond with 

the peaks on the primary prediction error, 
n

ε . A way to reduce the influence of 

peaks is to reduce the amplitude of "aberrant values" to the value of the standard 

deviation.  

 



The secondary prediction error
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Fig. 5 - The secondary prediction error 
nη . Arrows mark the influence the peaks have on the 

predictor outcome 
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Fig. 6 - The self-correlation function of the secondary prediction error 
n

η  

 

The residual error 
nη  shows regions where the predictor has been significantly 

fooled by peaks (“aberrant values”) in the time series; large errors with both 

positive and negative values occur in the prediction just after the peaks. 
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Histogram of the secondary prediction 
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Fig. 7 - The histograms of the errors: a) initial error. b) histogram for the secondary prediction error 

nη . Notice that there is no reduction in error range from -0.1 to 0.33. 

 

The prediction does not change the general appearance of the error time series, 

as the error 
n

ε  (solid thin line) and the error 
nη  (dotted line) look quite similar, as 

shown in Fig. 8. With solid line, was represented the difference between 
n

ε  and 

nη . For a better visibility, a zoom for the last 100 samples is illustrated in Fig. 9.  

 

The final prediction and error
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Fig. 8 - The true and the predicted A time series, as trained with the system in Fig. 2 on the HIV1 
genomic segment of the ENV gene.  

 



The final prediction and error
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Fig. 9 - The true and the predicted A time series, as trained with the system in Fig. 2 on the HIV1 
genomic segment of the ENV gene. Zoom for the samples [615, 715]. No filtering of aberrant errors. 

 

The signals represented in Fig. 8 correspond to the TEST period. The accuracy 

of prediction is notable (see Fig. 9); the maximum difference, of about 0.37, is 

reached by a single sample (see Fig. 10). 

 

Histogram of the final prediction error
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Fig. 10 - The histogram of the final prediction error 

 

The histograms of the errors, illustrated in Fig. 7 and Fig. 10, are close to  

Gauss functions. That shows that most of the relevant information in the data has 

been used by the predictor. The Gauss-like histogram is not, of course, a guarantee 

that the signal (remaining error) is pure white noise, but it is a necessary condition 

for the error being white noise. Moreover, it is an indication that there is no strong 

global correlation in the remaining signal. Therefore, we need other tools to 

determine the degree of information extraction from the signal. Such a tool is the 

self-correlation function. 

 

 

 

 



4. Discussion  

 

The prediction of the error time series shows that: the prediction applied to 
n

ε  

does not change the general appearance of the error time series, as the error 
n

ε  and 

the error 
nη  look quite similar; the correlation functions of the two errors show 

very little correlation meaning that the errors are mainly white noise – a fact 

confirmed by the histogram of the errors. 
The remarks above lead to some consequences on the genome time series: 

� There is a certain correlation in the distribution of the A, C, G, T bases, yet 

a significant part of the distribution along the genomic series of the bases 

looks random. 

� Coherent information is not equally distributed on the four bases, because 

the errors look rather different. 

� A significant part of the coherence is not quite specific to genes, but to the 

overall genome. Indeed, training on a gene the predictor does not guarantee 

in general. Removing the part of the coherence that is not gene-specific 

might improve the identification of the gene segments and splice positions – 

a hypothesis that must be tested yet. 

 

5. Conclusions and further work 

 

We conclude that the two-step NF predictor has extracted the available 

information in the time series and that further prediction should be based on 

models of white noise rather on correlation in the signal. In this respect, a HMM-

based system might work better.  

We have not yet studied the “word”-level distributions, i.e., the time series of 

the distances between “di-bases”, like AC, AG, AT, … sequences. This task 

remains to be fulfilled. Adding di-bases prediction may improve the selectivity of 

the predictor in recognizing a specific sequence. 

To improve the prediction after the occurrence of the aberrant values, while 

preserving the predictability of the aberrant values, during the training stage the 

aberrant values are taken into account in the section preceding them, while they are 

replaced by the value σ  in the sections succeeding them. 
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