
CHAPTER 6

BEYOND VOLTERRA AND WIENER:
OPTIMAL MODELING OF NONLINEAR
DYNAMICAL SYSTEMS IN A NEURAL
SPACE FOR APPLICATIONS IN
COMPUTATIONAL INTELLIGENCE

RUI J. P. DE FIGUEIREDO

6.1 INTRODUCTION

Nonlinear dynamical systems are playing a major role in a number of applications of

computational intelligence. In order to maintain the current growth of the technol-

ogies supporting these applications into this new century, it is essential to develop

rigorous, accurate, efficient, and insightful models for describing nonlinear dynami-

cal systems’ behavior, including adaptation, learning, and evolution, based on

input–output observations or input–output specifications. If based on observations,

the modeling process is called system identification, and if based on specifications, it

is called system realization or design.

In this chapter, we present optimal solutions to both of the preceding problems in

the setting of a Neural Space N introduced by the author in 1990 [1,2]. N is a separ-

able Hilbert space of nonlinear1 maps, f, that map a given vector x from a data space,

X, which itself is a separable Hilbert or Euclidean space, to an m-vector y of m scalar

outputs yj ¼ fjðxÞ, j ¼ 1; . . . ;m, and fj are bounded analytic functionals on X expres-

sible as Volterra functional series on X [3]. The fj belong to an appropriately con-

structed reproducing kernel Hilbert space, F, also introduced by de Figueiredo et

al. in [4] in 1980, as a generalization of the symmetric Fock space. Details on this

formulation as well as applications have been presented and discussed elsewhere

[5–24].
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Our objective here is to provide an overview and a further extension, oriented

toward computational intelligence, of the underlying concepts and methodology

for a mixed engineering/mathematical audience. The presentation will be from

an approximation-theoretic rather than random-field viewpoint. The latter will be

presented separately [24].

First and foremost, it is worthwhile pointing out the following two special fea-

tures of our formulation.

First, our approach is nonparametric and leads to a simultaneous determination

of an optimal structure as well as optimal values of parameters for the model of the

system to be identified or realized. This is done by minimizing the maximum error

(with respect to (w.r.t.) a metric in N ) between a desired but unknown nonlinear

map, f, to be identified or realized, and its best estimate (model), f̂ , under prescribed

prior uncertainty conditions on f and subject to the input–output observed or speci-

fied data constraints on f. This type of estimation embodies the notion of a best

robust approximation of f by f̂ .

Second, even though no a priori structure is assumed for the model, the optimal

solution appears in the form of a neural system. Thus an additional feature of our

formulation is that it provides a mathematical justification for why biological sys-

tems, like the human brain, that perform tasks requiring computational intelligence

have a neural system structure; and it points a way to model artificial and natural

neural systems rigorously under a common framework.

Despite the power and richness in their description, prior works in the area of

Volterra series [3,28–32] and its variants, such as Wiener–Bose series [25–32],

had the following shortcomings, which we have attempted to overcome.

6.1.1 Shortcomings of the Previous Volterra
and Wiener Formulations

The Volterra functional series (VS) representation of a nonlinear map, f, from a func-

tion space, X, to the complex plane, C, is an abstract power series in the input x 2 X

of the form

yðtÞ ¼ f ðt; xÞ ¼
X
n¼0

1

n!
fnðt; xÞ ð6:1Þ

where t is an indexing time variable for the scalar output variable yðtÞ, and if

X ¼ L2ðIÞ, I being an interval of the real line,

fnðt; xÞ ¼
Z

I

� � �
Z

I

hnðt; t1; . . . ; tnÞxðt1Þ � � � xðtnÞ dt1 � � � dtn ð6:2Þ

where the kernels hnðt; � � �Þ belong to an appropriate space like L2ðInÞ.
An expression for fn when x 2 EN ¼ X, where EN is an N-dimensional complex

Euclidean space, is given in a later section (6.31).

The VS representation (6.1)–(6.2), which has been used widely as a feedforward

model for continuous time-parameter nonlinear dynamical systems [3,28–32], has
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some serious limitations. The multiple integrals in (6.2) are difficult to implement

computationally. If, in order to mitigate this difficulty the series is truncated except

for a few terms, (1) the resulting truncation errors are significant except when the

amplitude of the input x is small, and (2) any least-squares approximation of the

model, to satisfy the input–output data constraints, takes place in a finite dimen-

sional space spanned by the truncated series rather than in an infinite-dimensional

space to which the series may belong. This difficulty does not occur in our formula-

tion.

To mitigate these difficulties, Wiener and Bose [25,26] proposed a Gram–

Schmidt orthogonalization of the VS in the space of the output random variable

yðtÞ, with the input as white Gaussian noise (WGN).

Specifically, the Wiener–Bose model is expressed in the form [25–28]

yðtÞ ¼ HðLxðtÞÞ ð6:3Þ

where L is a linear differential dynamical system that enables the expansion of the

input signal into Laguerre functions lið�Þ, and Hð�Þ represents a zero-memory non-

linear system that expands the range of L (i.e., in terms of the scalar variable

z ¼ LxðtÞ) into orthogonal Hermite functions2 jkðzÞ (see Fig. 6.1). This leads to

an expansion in the form (6.1) and (6.2), where the functionals fnðt; xÞ are expressed

in terms of the Laguerre and Hermite basis functions appearing in the representation

(6.3). The coefficients associated with the kernels in such a parametric representa-

tion are obtained by using WGN as the test input x and performing a Gram–Schmidt
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Figure 6.1 The Wiener–Bose nonlinear functional series model. In this model, the

functional expansion is yðtÞ ¼
P1

k0¼ 0 � � �
P1

kn ¼ 0 ak0 ���kn
Zk0

ðc0ðtÞÞZk1
ðc1ðtÞÞ � � �Zkn

ðcnðtÞÞ
exp 	 1

2

Pn
i¼ 0

�
c2

i ðtÞ
, where ciðtÞ ¼
R t

	1 liðt 	 tÞxðtÞ dt.

2 Orthogonal Hermite functions jkðzÞ are of the form jkðzÞ ¼ ZkðzÞ exp 	 1
2

z2
� �

, where ZkðzÞ is a

Hermite polynomial in z of degree k.
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orthogonalization of the output random variable yðtÞ with respect to the random

variable output of each kernel.

Thus the parameters in the model are determined so that, when xðtÞ is WGN, the

following (known as Wiener G-functional decomposition) holds:

E½yðtÞ
 ¼ f0ðt; xÞ ð6:4Þ

E½ f0ðt; xÞ f1ðt; xÞ
 ¼ 0 ð6:5Þ

E½ f0ðt; xÞ f2ðt; xÞ
 ¼ E½ f1ðt; xÞ f2ðt; xÞ
 ¼ 0 ð6:6Þ

E½ f0ðt; xÞ f3ðt; xÞ
 ¼ E½ f1ðt; xÞ f3ðt; xÞ
 ¼ E½ f2ðt; xÞ f3ðt; xÞ
 ¼ 0 ð6:7Þ

etc . . .

This orthogonalization guarantees that, when the input is WGN, truncation gives

the minimum mean-square estimate of the output using the untruncated terms.

Despite this property, the Wiener–Bose model also has some fundamental limita-

tions.

First, the model presents a conceptual difficulty posed by its use of WGN as a test

signal. While WGN is an ideal test signal for probing linear time-invariant (LTI) sys-

tems, because different frequency components pass through an LTI system without

mutual interference, WGN appears the least desirable one for testing nonlinear

dynamical systems because of the effects of this interference.

Second, a truncation of the series optimized w.r.t. WGN input need not be optimal

with respect to any nonwhite or/and non-Gaussian input. Of course, the Wiener–

Bose procedure could be repeated for a given nonwhite or/and non-Gaussian input

signal, but then the model would not be optimal w.r.t any other type of input statis-

tics.

These considerations and the computational effort in the implementation of the

model mentioned previously point to the need of looking for other approaches.

Numerous papers and treatises have appeared on the analysis and control of non-

linear dynamical systems (see, e.g., [28–51]) that in one way or another relate to the

approach presented here. Limitations in space do not permit us to review them here.

6.1.2 Summary of This Chapter

In Section 6.2 we briefiy describe the three basic types of nonlinear dynamical sys-

tem models grouped according to their configuration and description. They are feed-

forward, recurrent, and state-space models. In these models we indicate the generic

nonlinear maps that appear in their description. These are in general m-tuples

fj; j ¼ 1; . . . ;m, of nonlinear maps from a complex separable Hilbert space X

(which could be the N-dimensional Euclidean space EN) to the complex plane C.

In Section 6.3 we make the fundamental and very general assumption that the

maps fj are bounded analytic functionals on X expressible as an abstract power series

(VS) in x 2 X. We construct a reproducing kernel Hilbert space (RKHS), F, to which
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the maps fj can be made to belong, and study the properties of this space, F, needed

in the modeling of the nonlinear dynamical systems described in Section 1.2.

In Section 6.4 we show how these properties provide a rationale for the deriva-

tion/design of sigmoid functions as elements in the nonlinear dynamical-system

modeling process.

In Section 6.5 we formally introduce the neural space N and present, as men-

tioned earlier, an explicit expression for the best robust approximation f̂ of f in

N . We show that such an f̂ appears as an abstract two-hidden-layer artificial neural

network, called by us an optimal interpolating (OI) neural network, so obtained

without prior assumption that f̂ have a neural structure. This motivates our calling

N a neural space. These theoretical developments also provide new rationales for

representation of neural systems as linear combinations of shifted sigmoid functions

and as linear combinations of radial basis functions (RBF). Also in that section, an

optimal solution, f̂ , for the case in which the data are corrupted by WGN is given,

with a two-layer optimal smoothing (OS) neural network as a special case.

In section 6.6, we port the developments of the preceding section to feedforward,

recurrent and state-space models of nonlinear dynamical systems in the neural space

N . Extensions to complex models, such as OMNI (optimal multilayer neural inter-

polating) net and OSMAN (optimal smoothing multilayer artificial neural) net,

which may include feedback, are also presented.

Section 6.7 provides a framework for porting the technology developed in the

present chapter to computationally intelligent systems by modeling these systems

as mixed (continuous/discrete) systems. The synthesis of these systems is achieved

through appropriate application-specific combinations of MOI (mixed OI) and MOS

(mixed OS) nets. Finally, in this section, a framework is presented for modeling what

we call intelligent learning by CI systems as a combined adaptation and evolution

process, and discovery as a consequence of augmentation of a higher-level neuronal

layer in the system.

We end, in Section 6.8, with concluding remarks on some current and potential

applications of this technology.

6.2 CLASSES OF NONLINEAR DYNAMICAL SYSTEM MODELS

There are in general three categories of basic models of nonlinear dynamical sys-

tems, namely feedforward, recurrent, and state-space models. Furthermore, by inter-

connection of such models (see, e.g., [51]), more complex models with any

appropriate degree of complexity can be obtained.

In this section we discuss descriptions of the basic models just listed at the block-

diagram level, both for the discrete-time-parameter (DTP) and continuous-time-

parameter (CTP) cases. For simplicity in presentation, we restrict discussion to

single-input/multiple-output systems in the feedforward case, to single-input/

single-output systems in the recurrent case, and to multiple-input/multiple-output

systems in the state-variable case. For the descriptions of the three basic models

we will show in Section 6.6 how the nonlinear maps that appear in the various blocks
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in the diagrams of this section can be optimally approximated and realized using our

approach. A Note Regarding Notation: Even though we will call X the input data

space, it will stand for the domain of the functionals that appear in various blocks.

However, the meaning of X will be clear from the context.

6.2.1 Feedforward Models

For the single-input/multiple-output feedforward model we have the following

descriptions, as depicted in Figure 6.2.

DTP Case

yðkÞ ¼ f ðk; xÞ
¼ ð f1ðk; xÞ; . . . ; fmðk; xÞÞT ð6:8Þ

where the superscript T denotes the transpose, xðkÞ 2 E1 and yðkÞ 2 Em are scalar

input and vector output samples at the instant k, and we use the notation

x ¼ ðxðkÞ; xðk 	 1Þ; . . . ; xðk 	 N þ 1ÞÞT ð6:9Þ

for the input data string of length N up to and including k, and

fjðk; �Þ; j ¼ 1; . . . ;m, are bounded analytic functionals (VS) on EN . Thus the

input data space, X, for this case is the space EN of strings x. If the strings, x,

are square summable and of infinite length, X is l2.

CTP Case

yðtÞ ¼ f ðt; xÞ
¼ ð f1ðt; xÞ; . . . ; fmðt; xÞÞT ð6:10Þ

x(k)

x(k−1)

x(k−N+2)

x(k−N+1)

y(k)x

ym(k)

y2(k)

y1(k)

fm(k;·)

f2(k;·)

f1(k;·)

y(t)

ym(t)

y2(t)

y1(t)

fm(t;·)

f2(t;·)

f1(t;·)

x(k)

(a) DTP Case

x={x(s):t0�s�t}

(b) CTP Case

∆

∆

∆

Figure 6.2 Feedforward models for single-input/multiple-output dynamical systems.
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where the input signal (data) x on an interval I ¼ ½t0; t
 belongs to a complex-

valued function Hilbert space X such as L2ðIÞ or3 W2
NðIÞ, and fjðt; �Þ are bounded

analytic functionals (VS) on X.

Note that (6.8) and (6.10) can be viewed as discrete- and continuous-time para-

meter nonlinear convolutions with the input x.

6.2.2 Recurrent Models

The general description for a recurrent single-input/single-output nonlinear dynami-

cal system in Direct Form I, as depicted in Figure 6.3, is as follows.

DTP Case

yðkÞ þ f ðk; yÞ ¼ gðk; xÞ ð6:11Þ

x y

x(M−1)(t)

x(M)(t)

x y

x(1)(t)

y(k−1)

y(k)

x(k−1)

x(k−M+1)

x(k−M)

y(k−N+1)

x(k−N)

g(k;·) f(k;·)

f(t;·)g(t;·)

x(k)

x(t)

(a) DTP Case

(b) CTP Case

∆

∆

∆

∆

∆

∆

y(N−1)(t)

y(N)(t)

y(1)(t)

y(t)

Figure 6.3 Recurrent models for single-input/single-output dynamical systems.

3 W2
N is the Sobolev space of complex-valued functions, f , on I such that f ðiÞ, i ¼ 1; 2; . . . ;N 	 1 are

absolutely continuous and f ðNÞ 2 L2ðIÞ.
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where xðkÞ and yðkÞ denote the scalar input and output samples at instant k, and x

and y are given by

x ¼ ðxðkÞ; . . . ; xðk 	 MÞÞT 2 EMþ1 ð6:12Þ
y ¼ ðyðk 	 1Þ; . . . ; yðk 	 NÞÞT 2 EN ð6:13Þ

Thus, for this case, the input data space, X, to which x belongs, is EMþ1, and

gðk; �Þ : EMþ1 ! C is a bounded analytic functional on X. Similarly, y is the string

of previous output samples from k 	 1 to k 	 N, and f ðk; �Þ : EN ! C is a bounded

analytic functional (VS) on EN .

CTP Case

yðNÞðtÞ þ f ðt; yÞ ¼ gðt; xÞ; ð�Þð jÞ ¼ dj

dtj
ð6:14Þ

where xð�Þ and yð�Þ are appropriate scalar input and output functions of the con-

tinuous, t, variable, and, for convenience we use the abbreviated notation4

x ¼ ðxðtÞ; xð1ÞðtÞ; . . . ; xðMÞðtÞÞT 2 EMþ1 ð6:15Þ
y ¼ ðyðtÞ; yð1ÞðtÞ; . . . ; yðN	1ÞðtÞÞT 2 EN ð6:16Þ

where f ðt; �Þ and gðt; �Þ are defined as in the DTP case. Thus the space, X, to which

x belongs is EMþ1, the set of values at time, t, of the input xð�Þ and its derivatives

up to order M, together constituting the space EMþ1. Note also that in (6.14),

f ðt; �Þ is a nonlinear analytic function of the values yð1ÞðtÞ; . . . ; yðNÞðtÞ constituting

the space EN , while in (6.10) fjðt; �Þ represents a nonlinear convolution with the

input function xð�Þ.

6.2.3 State-Space Models

For a general M-input/N-output state-space model, we have, as indicated below.

DTP Case

As depicted in Figure 6.4a,

xðk þ 1Þ ¼ f ðk; xðkÞ; uðkÞÞ ð6:17Þ
yðkÞ ¼ gðk; xðkÞ; uðkÞÞ ð6:18Þ

where xðkÞ 2 Es, uðkÞ 2 EM , and yðkÞ 2 EN denote the state, input, and output

vectors at time k, and f ðk; �; �Þ and gðk; �; �Þ are, respectively, s-tuples and N-tuples

4 Note that xð�Þ needs to be sufficiently smooth by belonging to a function space such as W2
MðIÞ in order for

the representation (6.15) to be possible.
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of bounded analytic functionals on EsþM . We can label this space X for the

purpose of modeling f and g.

CTP Case

As shown in Figure 6.4b,

dxðtÞ
dt

¼ f ðt; xðtÞ; uðtÞÞ ð6:19Þ

yðtÞ ¼ gðt; xðtÞ; uðtÞÞ ð6:20Þ

where f ðt; �; �Þ and gðt; �; �Þ are the same mappings as in the DTP case.

In each of the preceding cases our detailed modeling depends on the best approx-

imation of a generic bounded analytic functional on a separable Hilbert space, X,

different notations and interpretations being given for such functionals in the

descriptions of the three categories of models just presented.

On this basis we now proceed to construct and study the properties of an RKHS,

F, to which such functionals are made to belong and which will aid in achieving our

objectives.

6.3 THE DE FIGUEIREDO–DWYER–ZYLA SPACE F

6.3.1 Definition of the Space

Let X denote an abstract separable Hilbert space over C, with the scalar product

and norm in X being denoted by hx; zi and kxk ¼ hx; xi1=2
for any x and z in X.

For example, depending on the model under consideration, X could be a finite

dimensional Euclidean EN , l2, L2ðIÞ, or W2
NðIÞ for some positive integer N.

Let there be given a bounded set � in X defined by

� ¼ fx 2 X : kxk2 � m2g ð6:21Þ

u(k)

x(k)
y(k)

u(k)

u(t)

u(t)

y(t)
x′(t) x(t)

f (k;·) f (t;·)

g(t;·)g(k;·)
x(k+1)

Unit Delay

(a) DTP Case (b) CTP Case

∆ �

Figure 6.4 State-space models for multiple-input/multiple-output dynamical systems.
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for some positive m, as well as a sequence of positive weights, expressing prior

uncertainty in the model

l ¼ fl0; l1; . . .g ð6:22Þ

satisfying

X1
n¼0

ln

m2n

n!
< 1 ð6:23Þ

Also, let Zi : i ¼ 0; 1; . . . denote an orthonormal basis in X. Then a homogenous

Hilbert–Schmidt (H-S) polynomial fn of degree n in elements of X is defined by the

tensor product

fn ¼
X1
i1¼0

� � �
X1
in¼0

ci1���inZi1
�Zi2

� � � � � Zin

¼
X1
i1¼0

� � �
X1
in¼0

ci1���inhZi1
; �ihZi2

; �i � � � hZin
; �i ð6:24Þ

where ci1���in are complex constants, symmetric in the indices, satisfying

k fnkn ¼
4 X1

i1¼0

� � �
X1
in¼0

jci1���in j
2

" #1=2

< 1 ð6:25Þ

The completion Xn, under (6.25), of all homogeneous H-S polynomials of degree

n in elements of X is a Hilbert space under the inner product

hfn; gnin ¼
4 X1

i1¼0

� � �
X1
in¼0

c�i1���in di1���in ð6:26Þ

where � denotes complex conjugation, and di1���in are the coefficients associated with

the H-S representation of gn.

In terms of the element of Xn

xn ¼ x; x � x; . . . ; x � � � � � x ð6:27Þwe can define

fnðxÞ¼
4 h fn; xnin ð6:28Þ

This leads to the following [4].
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Definition 1 Under (6.21)–(6.23), the de Figueiredo–Dwyer–Zyla (dFDZ) space,5

denoted by Flð�Þ or simply F, is the completion, under the norm (6.29), of the space

spanned by the sequence f ¼ ffn 2 Xn : n ¼ 0; 1; . . .g, satisfying

k fkF ¼4
X1
n¼0

1

n!ln

kfnk2
n

 !1=2

< 1 ð6:29Þ

Remark 1 Clearly, the following developments hold if F stands for a closed sub-

space of the space F defined earlier with some of the terms in the power series mis-

sing. This may occur in some applications.

Remark 2 Belonging to F are the bounded analytic functionals on � expressed as

VS in the form

f ðxÞ ¼
X1
n¼0

1

n!
fnðxÞ ð6:30Þ

For the case in which X ¼ L2ðIÞ; f ð�Þ, the form of f ðt; �Þ, was expressed previously

by (6.1), with t as an indexing variable.

If X ¼ EN , the functional fnðxÞ, where x ¼ ðx1; . . . ; xNÞT
takes the form

fnðxÞ ¼
X
jkj¼n

ck

jkj!
k!

xk ð6:31Þ

where

k ¼ ðk1 � � � kNÞ;
jkj ¼ k1 þ k2 þ � � � þ kN ;

k! ¼ k1! � � � kN !

ck ¼ ck1���kN
;

xk ¼ xk1

1 � � � xkN

N :

Remark 3 F constitutes a generalization of the symmetric Fock space used in the

representation of non-self-interacting Boson fields in quantum field theory [52–54].

Also, Hilbert spaces of analytic functions on Cn have been investigated extensively

(see, e.g., [55–57]). Our approach considers the more general case of functionals

5 Previously, we called this space generalized Fock space.
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(rather than functions) on a Hilbert space. It is based on the work of Dwyer on

differential operators of infinite order [58].

Finally, F has a unique reproducing kernel that often is available in closed form,

as stated in the following theorem the proof of which is given elsewhere [4,5,7].

THEOREM 1 Under the scalar product

h f ; giF ¼
X1
n¼0

1

n!

1

ln

h fn; gnin ð6:32Þ

where F is an RKHS with the reproducing kernel

Kðu; vÞ ¼ jðhu; viÞ ¼
X1
n¼0

ln

n!
hu; vin ð6:33Þ

that is,

jðsÞ ¼
X1
n¼0

lnsn

n!
ð6:34Þ

In the special case in which

ln ¼ ln
0 ð6:35Þ

the reproducing kernel takes the form

Kðu; vÞ ¼ expðl0hu; viÞ ð6:36Þ

and so

jðsÞ ¼ expðl0sÞ ð6:37Þ

6.3.2 Properties of F

The following three propositions follow from the theory of reproducing kernels [61].

We will use them in the solution of the modeling problem.

PROPOSITION 1 As a function of x;jðhv; xiÞ, and in particular expðl0hv; xiÞ, are

members of F. We express this as

jðhv; �iÞ 2 F ð6:38Þ
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and in particular,

expðl0hv; �iÞ 2 F ð6:39Þ

PROPOSITION 2 jðhv; �iÞ is the representer (in the sense of the Riesz representa-

tion theorem) in F of the point evaluation functional on F, i.e.,

hjðhv; �iÞ; f ð�ÞiF ¼ f ðvÞ ð6:40Þ

8 f 2 F.

PROPOSITION 3 Let x be a continuous linear functional on F. Then a representer

xðhv; �iÞ 2 F of x is obtained by the action of x on j with j as a function of its

adjoint argument, this being denoted by a respective subscript on x, that is,

xðhv; �iÞ ¼ xvðjðhv; �iÞÞ ð6:41Þ

Remark 4 For the purpose of this chapter it will be sufficient to consider the class

of linear functionals on F defined in terms of bounded sequences of constants

ða0; a1; . . .Þ by

xvð f Þ ¼
X1
n¼0

an

n!
fnðvÞ ð6:42Þ

where fn is as in (6.28) and (6.30).

By considering jðhv; xiÞ as an element of F in terms of v, with x a fixed para-

meter, we have, according to (6.42), and (6.33),

xvðjðhv; xiÞÞ ¼
X1
n¼0

an

n!
lnhv; xin ð6:43Þ

and hence, according to (6.33) and (6.42), (6.43) gives (6.41) explicitly, i.e.,

hxvðjðhv; �iÞÞ; f ð�ÞiF ¼
X1
n¼0

an

n!
fnðvÞ ð6:44Þ

6.4 DERIVATION OF SIGMOID FUNCTIONALS

Sigmoid functions6 [37] play an important role in computationally intelligent sys-

tems. In our formulation, they are representers of linear observation or specification

6 A sigmoid functional is a composition of two maps: a nonlinear function and a scalar product in X.

The first map is called a sigmoid function.
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functionals on F. Hence their modeling is application specific. We derive expres-

sions for such representers ((6.47), (6.50), (6.51), (6.54), (6.55)) for five important

cases. We denote by superscripts the labels of the corresponding sigmoids and illus-

trate their well-known characteristics for some of them in Figure 6.5. In these

expressions, the parameter l0 determines the reproducing kernel (RK) of F and

hence the metric of F. So in a given application, by adjusting l0 one may make

this metric match the prior mode uncertainty expressed by the RK.

6.4.1 Exponential Activation Functional

The exponential activation functional is the point evaluation functional xp
v on F, i.e.,

xp
vð f Þ ¼ f ðvÞ ð6:45Þ

and according to Proposition 1, its representer is

xpðhv; �iÞ ¼ jðhv; �iÞ ð6:46Þ

exp(λ0<v,x >)

(a) Exponential (b) Modified Bipolar Exponential

(c) Modified Unipolar Exponential
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Figure 6.5 Examples of sigmoid functions.
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and in the case of (6.37)

xpðv; �Þ ¼ expðl0hv; �iÞ ð6:47Þ

Note that the constants an in (6.42) are equal to 1 for this functional.

6.4.2 Modified Exponential Sigmoid Functional

This functional corresponds to the unipolar activation functional

geuðxÞ ¼
1

1 þ expð	rhv; xiÞ ð6:48Þ

where r is a scaling parameter and v is an appropriate element of X.

This functional corresponds to the one defined by (6.42) with the constants an:

an ¼ 1

2
ð	1Þn

Enð0Þ ð6:49Þ

where Enð0Þ denotes the coefficient of the zeroth-order term of the nth-degree Euler

polynomial, i.e., an is the zeroth-order nth-degree Euler number.

With this agreement, the representer in F for this functional is as in (6.42) with

the an as in (6.49), and in the special case of the exponential reproducing kernel

(6.37),

xeuðhv; �iÞ ¼ 1

1 þ expð	l0hv; �iÞ
ð6:50Þ

where the a priori uncertainty weight l0 in F corresponds to the scaling parameter r
in (6.48).

In a similar way, one can derive the expression for the representer of the bipolar-

modified exponential sigmoid functional

xebðhv; �iÞ ¼ 2

1 þ expð	l0hv; �iÞ
	 1 ð6:51Þ

6.4.3 Hyperbolic Tangent Sigmoid Functionals

To obtain the representer in F corresponding to the bipolar hyperbolic tangent acti-

vation functional

gtbðvÞ ¼ tanhðrhv; xiÞ ð6:52Þ
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where r and v are the same as defined in connection with (6.48), assume that in

(6.42) the even power coefficients are zero. Then the desired representer is obtained

by letting the odd power coefficients in (6.42) be

a2n	1 ¼ 22nð2n 	 1Þ
n

B2n; n ¼ 1; 2; . . . ð6:53Þ

where B2n denotes the Bernoulli [62] number of degree 2n. The corresponding repre-

senter, in the special case of the exponential reproducing kernel (6.37), is

xtbðhv; �iÞ ¼
X1
n¼1

1

ð2n 	 1Þ! a2n	1ðl0hv; �i2n	1Þ

¼ tanhðl0hv; �iÞ ð6:54Þ

where the scaling weight l0 is equal to r in (6.52).

In a similar way, we can obtain the representer of the unipolar hyperbolic tangent

functional in F:

xtuðhv; �iÞ ¼ 1

2
½1 þ tanhðl0hv; �iÞ
 ð6:55Þ

6.5 BEST ROBUST APPROXIMATION OF f
IN THE NEURAL SPACE NN

We now introduce the neural space N by way of the following.

Definition 2 For a given positive integer, m, and space, F, the neural space N is the

Hilbert space of m-tuples f ¼ ð f1; . . . ; fmÞ, with fj 2 F; j ¼ 1; . . . ;m, with scalar

product and norm in N for any f and g in N defined by

h f ; giN ¼
Xm

j¼1

h fj; gjiF ð6:56Þ

and

k fkN ¼ ½h f ; f iN 
1=2 ð6:57Þ

Remark 5 The space, N , is the direct product of the spaces F, i.e.,

N ¼ F � F � � � � � F
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{m

so the members of N having a common domain X. On this basis, (6.56) and (6.57)

make sense. We will show that members of N are optimally implemented as neural
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networks. Therefore the scalar product (6.56) measures the similarity between the

two neural networks that the maps f and g represent, and the norm (6.57) when

used as k f 	 gkN expresses a metric distance between these two networks.

We now state the following best robust approximation problem of a nonlinear

map f 2 N (with the notation f ðxÞ ¼ y) based on an ellipsoidal prior uncertainty

model in N and a set of q observations or specifications’ constraints on f. Even

though f may be a component of a larger dynamical system, such as those described

in Section 6.2, we call, for convenience, its domain and range spaces, input and

output spaces.

PROBLEM 1 Let there be given the input–output data pairs

ðxi 2 X; yi 2 EmÞ; i ¼ 1; . . . ; q ð6:58Þ

where xi; i ¼ 1; . . . ; q are linearly independent, and a set of q functionals of the type

(6.42) with the representers in F of the form (6.43) expressed by

xxiðjðhxi; �iÞÞ; i ¼ 1; . . . ; q ð6:59Þ

with regard to which f satisfy input–output data constraints that confine f to the set

� ¼ f f 2 N : hxxiðjðhxi; �iÞÞ; fjiF ¼ yi
j;

i ¼ 1; . . . ; q; j ¼ 1; . . . ;mg ð6:60Þ

and assume that f lies on a prior uncertainty ellipsoidal set in �

� ¼ f f 2 N : k fkN � gg ð6:61Þ

for some g > 0 sufficiently large so that the set

w ¼ � \ � ð6:62Þ

is nonempty.

Find the best robust approximation f̂ of f as the solution of the min-max optimi-

zation problem

sup
~f2w

k f̂ 	 ~fkN � sup
~f2w

k f 	 ~fkN 8 f 2 w ð6:63Þ

Remark 6 Figure 6.6 provides a geometrical illustration of the sets f, �, and w in

N , where f is a hyperplane, � an ellipsoid, and w a subset of f. It is also clear from

this figure that the point in w for which the maximum distance from all other points

in w is minimum is the centroid of w, which thus corresponds to the solution, f̂ , of the

minimum norm problem

min
f2w

k fkN ð6:64Þ
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Remark 7 Since, according to (6.56) and (6.57),

k fkN ¼
Xm

j¼1

k fjk2
F

" #1=2

ð6:65Þ

minimization of k fkN is achieved through the minimization of the individual k fjkF ;
j ¼ 1; . . . ;m.

The preceding two remarks explain the validity of the following theorem, a

formal proof of which is given elsewhere [1,2,7].

THEOREM 2 Problem 1, expressed by (6.63), has a unique solution, f̂ , which is

the solution of the minimum norm problem

min
f2w

k fkN ð6:66Þ

Each component f̂j of the solution is the unique vector belonging to the subspace of F

spanned by the representers xxiðjhxi; �iÞ satisfying the interpolating constraints

(6.60). This leads to the closed-form expression for f̂ :

f̂ ðxÞ ¼ WT KðxÞ ð6:67Þ

where W ¼ q � m matrix and Kð�Þ, a q-dimensional vector, are computed as follows

KðxÞ ¼ ðxx1ðjðhx1; xiÞÞ; . . . ; xxqðjðhxq; xiÞÞÞT ð6:68Þ
W ¼ G	1YT ð6:69Þ

where G is the q � q matrix with elements

Gij ¼ hxxiðjðhxi; �iÞÞ; xx jðjðhx j; �iÞÞiF

¼ hcðhxi; �iÞ;cðhx j; �iÞiF

¼ cðhxi; x jiÞ ð6:70Þ

Centroid

χ
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B
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(b) Optimization Problem

Figure 6.6
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and Y is the m � q matrix

Y ¼ ðy1; . . . ; yqÞ ð6:71Þ

A bound for the residual error x is

x � g	 YG	1YT ¼ a ð6:72Þ

Remark 8 Without prior assumption that the solution to the optimization Prob-

lem 1 has a neural structure, the optimal solution is in the form of a feedforward

two-layer abstract neural network, called by us an optimal interpolating (OI) net,

depicted in Figure 6.7. In this network the N � q synaptic weight matrix,7 X, for

the first layer of the network is obtained from the set of input vectors (called exemp-

lary inputs or simply exemplars)

X ¼ ðx1; x2; . . . ; xqÞ ð6:73Þ

Therefore, if the input space is EN , X in (6.73) is an N � q matrix and Xij is the

synaptic weight from the ith input node to the jth node of the first internal layer,

as shown in Figure 6.7a. If that space is L2ðIÞ, Xij is a ‘‘functional synaptic weight’’

between the entire xi signal and the jth node of the first internal layer, as depicted in

Figure 6.7b. Functional artificial neural networks, without being called this, were

first introduced in [6] and further discussed in [9–10].

Remark 9 The solution provided by Theorem 1 permits one to simultaneously

extract optimal structure and the optimal set of parameters that belong to it. The pro-

cess of this acquisition is called intelligent learning vis-a-vis other types of learning

based on numerical optimization algorithms like the Amari [36] and Hebbian [37]

learning ones. Algorithms for ‘‘instantaneous learning’’ (by obtaining (6.67) with all

the exemplars included) and ‘‘sequential (adaptive/evolutionary) learning’’ by (a

recursive least-square (RLS) procedure) have been presented and discussed at length

by the author in collaboration with Sin [11–13]. Additional comments appear in

Section 6.7.3.

Remark 10 The following five comments are of particular relevance:

1. Point Evaluation Functionals In the case in which the y j; j ¼ 1; . . . ; q,

represent outputs rather than more general observations/specifications

described by (6.42), then according to Proposition 2, the representers

xi
x are simply

xi
xðjðhxi; �iÞÞ ¼ jðhxi; �iÞ i ¼ 1; . . . ; q ð6:74Þ

7 Even though we used X to denote the input data space, for convenience we use the same notation for the

matrix (6.73), its meaning being clear from the context.
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and (6.68) and (6.70) take the form

KðxÞ ¼ ðjðhx1; xiÞ; . . . ;jðhxq; xiÞÞT ð6:75Þ
Gij ¼ jhxi; x ji ð6:76Þ

2. Rationale for Shifted Sigmoids Model Representation One can interpret the

model (6.67) in terms of shifted sigmoids of the type considered in Section

(6.4). For simplicity in presentation, we will consider the case in which m ¼ 1

(single output), use the abbreviated notation for the representers in (6.59) and

(6.68).

xxiðjhxi; xiÞ ¼ cðhxi; xiÞ ð6:77Þ

and denote by ri the shift in the ith sigmoid.

Figure 6.7 Signal-flow graphs for the OI net. (a) DTP case, (b) CTP case.
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The following cases are of interest:

(a) Exponential Sigmoid (6.47) In this case, shifts correspond to the scaling of

coefficients of unshifted sigmoids. The shifts are automatically taken into

account by our procedure according to:

expðl0ðhxi; xi 	 riÞÞ ¼ expð	l0riÞexpðl0hxi; xiÞ
¼ Aiexpðl0hxi; xiÞ i ¼ 1; . . . ; q ð6:78Þ

(b) Other Sigmoids ((6.50), (6.51), (6.54), (6.55)) In this case, sigmoid shifts

can be interpreted and taken into account in one of the following two ways.

(i) They can result from an offset x0 in the input signal x, i.e.,

cðhxi; xi 	 riÞ ¼ cðhxi; x 	 x0iÞ ð6:79Þ

where

ri ¼ hxi; x0i; i ¼ 1; . . . ; q ð6:80Þ

(ii) More fundamentally, one would like to represent the model, f , as a sum of

abstract power series (Taylor series) around p points ~xk 2 X, k ¼ 1; . . . ; p,

rather than a single power series around the origin (McLaurin series), as

we have done thus far. Typically, the points ~xk could be cluster centers of

the set of exemplars. One would then construct a new space, F, as a direct

sum of spaces, Fk, i.e.,

F ¼ F1 � F2 � � � � � Fp ð6:81Þ

each Fk being constructed as was F before, except that the space, X, for

Fk would be centered at ~xk.

From such a development it follows that (with m ¼ 1)

f̂ ðxÞ ¼
Xp

k¼ 1

Xq

i¼ 1

~wikcðhxi 	 ~xk; x 	 ~xkiÞ

¼
Xp

k¼ 1

Xq

i¼ 1

~wikcðhvik; xi 	 rikÞ ð6:82Þ

where

vik ¼ xi 	 ~xk ð6:83Þ
rik ¼ hvik;~xki ð6:84Þ

Thus, according to our formulation, one would determine ~xk from the training

data, and obtain the parameters vik and rik from (6.83) and (6.84). By
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arranging the subscripts ik lexicographically, we relabel them in terms of a

single indexing variable l ¼ 1; . . . ; L, where L ¼ pq. With this notational

agreement, we rewrite (6.82) using the subscript j to cover the case of

multiple outputs corresponding to j ¼ 1; . . . ;m, in the form

f̂jðxÞ ¼
XL

l¼ 1

wljcðhvl; xi 	 rlÞ ð6:85Þ

Here wlj denotes the weight ~wl ¼ ~wik for the jth output. By substituting (6.85)

in (6.69), taking the preceding notational agreement into account, the desired

optimal model (6.67) based on shifted sigmoids can be obtained.

Comment Barron and others (see e.g., [50]) have studied the property of

approximation of a known function by a linear combination of shifted

sigmoids. Their problem is clearly different from the one we have considered

to be best, approximating an unknown function, f, based on the training data,

an uncertainty model for f, and an appropriate space where f may reside.

Sigmoids appear as a possible consequence rather than a cause according to

our formulation.

3. Rationale for Radial Basis Functions Model Representations Another

popular scheme for modeling artificial neural systems is that based on the

RBF [38]. We now show how this scheme fits our model (6.67). Assume that

the space, F, consists of VS on X � X, where8 X ¼ EN . Then using the

exponential reproducing kernel (6.37) and the functional (6.42) with

an ¼ ð	1Þn
, we have for (6.43)

cðhI; x � xiÞ ¼ expð	l0kxk2Þ ð6:86Þ

where I denotes the N � N diagonal matrix

I ¼ Diagð1; . . . ; 1Þ ð6:87Þ

Constructing now a new space, F, in a way analogous to (6.81), we are led to

f̂ ðxÞ ¼
Xp

k¼ 1

Xq

i¼ 1

~wikexpð	l0kx 	 ~xkk2Þ ð6:88Þ

where ~xk, k ¼ 1; . . . ; p, are the vectors around which the VS expansions for

Fk, k ¼ 1; . . . ; p occur. The coefficients ~wik, k ¼ 1; . . . ; p, are obtained by

interpolating the expression (6.88) at the exemplars using the formulas

(6.68)–(6.71) with appropriate interpretation of the notation.

Note that, as indicated under (b)(ii), the ~xk, k ¼ 1; . . . ; p, constitute a set of

fiducial points extracted from the training (such as cluster centers or some

8 X Here denotes the input space.
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exemplars themselves) that best represent the structure of the training set for

the purpose just explained.

4. The deF Dimension The bound a on the residual error (6.72) enables us to

define a criterion that we denote by deFðaÞ, which measures an intrinsic

dimensionality of the OI net, in terms of the minimum number of neurons in

its first layer to achieve correct classification of all exemplars. Specifically,

we define deFðaÞ as the minimum number of exemplary pairs (xi, yi) needed

to keep the uncertainty error in (6.72) below a prescribed a.

5. Optimal Solution with Noisy Data If the output data are noisy, i.e.,

yi
j ¼ zi

j þ vi
j; i ¼ 1; . . . ; q; j ¼ 1; . . . ;m

where zi
j, i ¼ 1; . . . ; q, constitute the nonnoisy component of the data vector

yj, and vi
j, i ¼ 1; . . . ; q, are the corresponding components of an additive

WGN vector vj with zero-mean and covariance

Rj ¼ Diagðr1 j; . . . ; rq jÞ ð6:89Þ

there are a number of ways one can formulate the approximation problem.

One of the simplest ways is to note that the optimal solution lies in the span

of cðxi; �Þ, i ¼ 1; . . . ; q, i.e.,

fjðxÞ ¼
Xq

i¼ 1

wijcðxi; xÞ ð6:90Þ

and obtain the desired model as the solution to the penalized optimization

problem

min bk fjð�Þk2
F þ

Xq

i¼ 1

r	1
ij ðhcið�Þ; fjð�ÞiF 	 yi

jÞ
2

( )
ð6:91Þ

where b is a positive constant to be chosen by the modeler. A small value of b
expresses fidelity to the observed data at the expense of smoothness.

Substituting (6.90) and (6.70)–(6.71) in (6.91), we get

bwT
j Gwj þ

Xq

i¼ 1

r	1
ij

Xq

n¼ 1

Ginwnj 	 yi
j

 !2

ð6:92Þ

where

wj ¼ ðw1j; . . . ;wqjÞT ð6:93Þ
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By differentiating (6.92) partially with respect to each wij and setting the result equal

to zero, we obtain

ŵj ¼ ðbI þ R	1
j GÞ	1

R	1
j yj ð6:94Þ

and

f̂jðxÞ ¼ yT
j R	1

j ðbI þ R	1
j GÞ	1

KðxÞ; j ¼ 1; . . . ;m ð6:95Þ

We call the two-layer neural network represented by (6.95) an OS network.

6.6 OPTIMAL COMBINED STRUCTURAL AND PARAMETRIC
MODELING OF NONLINEAR DYNAMICAL SYSTEMS IN NN

Based on the developments of the preceding section, it is now possible to obtain opti-

mal structural and parametric realizations of the three classes of generic models

described in Section 6.2. For this purpose, in each case one picks each block

described by a nonlinear functional such as f or g in N as a feedforward artificial

neural system that may constitute the desired solution, or, after combination with

other blocks realized in a similar manner, may lead to an overall system that is a

recurrent or state-space realization. These procedures are explained graphically

for the DTP and CTP cases for feedforward, recurrent, and state-space models in

Figures 6.8–6.10, and are clear enough so as not to require further discussion.

Depending on the application, the generic two-layer artificial neural system mod-

ules of OI or OS nets can be assembled to produce larger and more complex models.

Each module may have an additional Winner–Take–All layer in tandem with it for

the purpose of decision as explained in the following section.

A generic feedforward 2n layer net called OMNI net is shown in Figure 6.11. If

the modules are OS nets, the resultant multilayer net is called OSMAN. Both OMNI

and OSMAN are multilayer perceptrons, the structure and parameters of which are

obtained using the framework developed in this chapter. Algorithms extending the

procedure (6.67)–(6.71) to this case are described in [8].

Through various interconnections of OI and/or OS modules, a nonlinear dynami-

cal system of any required complexity can be modeled, including, of course, systems

with feedback. As an example, Figure 6.12 illustrates a proposed OMNI net imple-

mentation of a cortical column of the primary visual cortex of a cat. The connection-

ist structure was obtained by Bolz, Gilbert, and Wisel [63,64] from pharmacological

experiments. Figure 6.12 shows the six OI nets that are used to implement the six

layers (regions) in the column and the interconnections.

For the Wiener–Bose (WB) model, we have proposed a modification [10,65]

using an OI net (Fig. 6.13). In this approximation, the linear (Laguerre) part of

the WB model is preserved and provides ‘‘functional’’ synaptic weights to the first

layer. The activations for this layer are provided by the Hermite part of the

WB model, and the second layer of the model is linear and consists of a single

neuron.
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Figure 6.8 Feedforward models for single-input/multiple-output dynamical systems.

8
9



6.7 COMPUTATIONALLY INTELLIGENT (CI) SYSTEMS

The concepts and methodology developed thus far in the present chapter can be of

value in the identification and realization of computationally intelligent (CI) sys-

tems. In what follows, we present a characterization and follow-up to the previous

developments oriented toward this goal.

Figure 6.9 Recurrent models for single-input/single-output dynamical systems.

Figure 6.10 State-space models for multiple-input/multiple-output dynamical systems.

90 OPTIMAL MODELING OF NONLINEAR DYNAMICAL SYSTEMS IN A NEURAL SPACE



6.7.1 CI Systems as Mixed Systems

Computationally intelligence usually involves functions that perform decisions

regarding simple or complex events present in the data acquired by some sensing

system. For this reason, CI systems are best modeled as mixed continuous/discrete

systems: continuous with regard to the computation of a score (or event membership

value in the case of a fuzzy CI system9 [66–68]) on the basis of which a decision is

made; and discrete in the representation of the event that needs to be detected, clas-

sified, or interpreted.

In the case of detection/classification, that is, of mapping a sensed vector x into

one of m hypotheses H1; . . . ;Hm of the occurrence of m possible events, the jth out-

put, j ¼ 1; . . . ;m of an m-output, CI system will be 1 or 0, depending on whether Hj

is or is not true. In the case of interpretation, the outputs will be appropriate arrays of

1s and 0s, corresponding to graphs expressing the various interpretations in a given

language.

Figure 6.11 A diagram of a general 2n-layer OMNI net with feedforward, feedback,

and external connections at every two-layer level (the figure depicts the most general

situation).

9 Due to space limitations, we do not discuss applications with appropriate modifications and

interpretations to fuzzy neural networks and systems.
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Figure 6.12 Proposed OMNI model for primary visual cortex of a cat.

Figure 6.13 Robust best approximation to the Wiener model. Coefficients wiðtÞ may be

generated recursively using the matrix inversion lemma. (Note: sqrtð�Þ denotes the square root

operator, and the blocks on the left side denote transfer functions.)
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6.7.2 MOI and MOS Nets

At a basic level, the scheme just described can be incorporated into a MOI net, which

is a 3-layer net consisting of an OI net (defined previously) in tandem with a Maxnet

that incorporates a Winner-Take-All (WTA) decision based on the scores provided

by the OI net. As depicted in Figure 6.14, the OI net maps the input data vector x into

the scores yi, i ¼ 1; . . . ;m provided by its m inputs. These in turn feed into the

Maxnet, which selects the output of the OI net with the highest score (see [2]).

The Maxnet is a m-input/m-output system, for which the input is a score vector

y ¼ ðy1; . . . ; ymÞT
, and the output is a binary vector z ¼ ðz1; . . . ; zmÞT

, the compo-

nents of z being all zero, except one, say zk, corresponding to the component yk of

y having the highest value (score). A (MOS) net may be defined and used in a similar

manner (see Fig. 6.14b). Appropriate combinations of MOI and MOS nets can be

utilized to identify or simulate complex decision systems or realize new ones.

6.7.3 Intelligent Learning as Combined Adaptation and Evolution

The approach presented here lends itself naturally to a process of combined adapta-

tion and evolution. This is what we call intelligent learning vis-a-vis conventional

learning. Conventional learning is implemented as a strictly numerical optimization

algorithm like the error back-propagation algorithm.

The underlying training procedure in our approach is explained for the MOI net

shown in Figure 6.15. In this figure, the first layer of the net consists of neurons

representative of the exemplars, the properties of which are to be retained by the

net. These exemplars are called prototypes. Thus the synaptic weights connecting

to the ith neuron of this first layer are the components of xi, assuming that xi is an

exemplar that has been retained as a prototype.

The second-layer neurons correspond to the m hypotheses/events, into one of

which the input vector is to be classified and the synaptic weights for this layer

are calculated using (6.67)–(6.71).

The training process begins by inserting the first neuron in the first layer of the net

with its synaptic weights consisting of the components of x1 and the second-layer

weights being calculated so as to enable its output vector to be the vector, y1,

associated with the first exemplary pair. As this process continues, and a new

Figure 6.14 Mixed net modules for CI systems.
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exemplar, say xk, is presented to the net, it gives rise to an output y that the Maxnet

maps into a vector, z. This z is then compared to the correct exemplary output vector,10

yk. If they agree, the exemplar, xk, is laid aside and the next exemplar is presented to

the net so that the process can continue as before. If z and yk do not agree, the error

signal z 	 yk from the subtractor shown in the figure is applied to an adaptation–

evolution controller that adds a neuron to the first layer corresponding to xk as an

additional prototype and adjusts the synaptic weights of the second layer accord-

ingly. This process of prototype addition corresponds to evolution, and the one of

adjusting the weights of the second layer to adaptation. This entire procedure is

based on an algorithm described by Sin and de Figueiredo [13].

The preceding training procedure converges, classifying all exemplars correctly

after recycling through the training set a few (typically two or three) times. During

this recycling, exemplars that have been laid aside are put back in the training set

after each cycle to make sure that all the exemplars have been taken into account.

Note that the number of exemplars retained as prototypes (number of neurons in

the first layer) depend on the order in which they have been presented to the net.

From the author’s experience, a very small number close to deFðaÞ results when

the prototypes are close to the boundaries of the decision region. For a number of

examples, see [13] and references therein.

Figure 6.15 Intelligent learning: combined adaptation/evolution process.

10 As indicated under 6.7.1, for any given pair ðxi; yiÞ; i ¼ 1; . . . ; q; the components yi
j; j ¼ l; . . . ;m; are

binary and yi
j ¼ l if and only if xi belongs to Hj.
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6.7.4 Discovery

Our formulation allows one to model the process of ‘‘discovery’’ by a neural system,

which we will explain, for simplicity, in terms of an MOI net. After the training of a

neural system is completed according to the preceding section, some vectors in the

new data being received may not classify properly. If a significant number of such

outliers appear, the cluster-detection-and-labeling (CDL) network recently devel-

oped by us [21] can be applied to such a set of outliers. The clusters obtained by

the CDL network can then be considered to constitute training sets for corresponding

new classes, and additional neurons added to the second layer of the net by training it

with the exemplars from these clusters. As a consequence, we can say that the net

discovered those new classes from its experience with the new data. This encapsu-

lates the concept of discovery by an artificial or natural neural system, according to

our formulation.

6.8 CONCLUDING REMARKS

The framework presented here is especially useful in applications where the

dynamics of the generation, processing, and/or delivery of data is nonlinear. Appli-

cations of this approach have been made to a number of problems, including non-

linear adaptive time-series prediction and nonlinear equalization in communication

channels, sonar signal analysis and detection, and neuroscience [6,12,13,15,17,

20–23]. Limitations in space did not permit us to discuss them here. The potential

of this technology is enormous for further applications in many fields, including

wireline, cable, fiber, and wireless communications, automated manufacturing, and

medical diagnostics and treatment.
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